Path Integral Monte Carlo and Hydrogen bond

Theo Saporiti CID: 01830497

May 12, 2020

Supervisor: Dr. Jarvist Moore Frost

Assessor: Prof. Jenny Nelson

Word count: 5994 words (6000 allowed)

Abstract

In this project a path integral Monte Carlo computer program based on the Metropolis-Hastings algorithm is written to numerically simulate quantum toy models, such as the simple quantum harmonic oscillator, and the hydrogen bond between water molecules. Toy models are compared with their expected theoretical results and it is attempted to observe nuclear quantum effects in the hydrogen bond. In the first part of the project, which is theoretical, Feynman's path integral formulation of quantum mechanics is introduced and used to reformulate the analytical problem of computing the zero-point energy of a system into a probabilistic one, hence justifying the use of Monte Carlo methods. A formal mathematical application of a Wick rotation is presented. The Metropolis-Hastings algorithm is explained and a modelization of the hydrogen bond is presented. In the second part of the project, which is computational, various physical quantities are measured in both toy models and the hydrogen bond model: for toy models the zero-point energy, the position probability density function in function of temperature and the size of particles are observed while for the hydrogen bond the bond length, the bond energy and tunnelling are observed. It is found that the execution of the Metropolis-Hastings algorithm is influenced by the simulated system. Simulated toy models behave as theoretically predicted: correct zero-point energies are measured, position probability density functions correctly vary with temperature, particles delocalize correctly in time and tunnelling is observed. Simulations regarding the hydrogen bond don't show any nuclear quantum effects and no secondary geometric isotope effect is observed.

Contents

1	Intr	roductory chapter	4		
	1.1	Motivation	4		
	1.2	Aims and objectives	4		
2	Disc	cussions of the methods employed	4		
	2.1	Feynman's path integral formalism	4		
		2.1.1 Justification	4		
		2.1.2 Derivation of the path integral	5		
	2.2	Wick rotation and Euclidean action	5		
		2.2.1 Justification	5		
		2.2.2 Derivation of the Euclidean action	5		
	2.3	Measurement of the zero-point energy	7		
		2.3.1 Justification	7		
		2.3.2 Derivation of the zero-point energy	7		
	2.4	Numerical implementation	8		
		2.4.1 Justification of the Metropolis-Hastings algorithm	8		
		2.4.2 Steps of the Metropolis-Hastings algorithm	g		
		2.4.2 Possible propositions of moves and optimisations	9		
		2.1.6 Tossible propositions of moves and optimisations $1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	10		
		2.4.4 Units in the programme	10		
	25	The hydrogen bond	11		
	2.0	2.5.1 Brief description	11		
		2.5.1 Dher description	11		
		2.5.2 Information	11 19		
		2.5.5 Numerical implementation	12		
3	Res	ults	13		
	3.1	Verification of the Metropolis-Hastings algorithm	13		
	3.2	Particle size	13		
		3.2.1 Theoretical predictions	13		
		3.2.2 Numerical results and discussion	14		
	3.3	Application of the Metropolis-Hastings algorithm on toy models	15		
		3.3.1 Effect of temperature on the position PDF	15		
		3.3.2 Analytical computations, numerical modelling and results	16		
		3.3.3 Discussion of results	19		
	3.4	Hydrogen bond	20		
		3.4.1 Fixed- R model of the H-bond \ldots	20		
		3.4.2 Free- R model of the H-bond \ldots	20		
		3.4.3 Measuring the bond length	21		
		3.4.4 Numerical results of both models and discussion	21		
4	Con	nclusions	23		
5	Acknowledgements 24				
A	Con	ventions of notation	27		
в	Con	nplete derivation of the path integral	27		
C	Proof of properties of \tilde{f} 2				
C	Pro	of of properties of f	28		

D	Explicit calculation for the zero-point energy	28
E	Proof of the Virial theorem	29
F	Convergence of the Metropolis-Hastings algorithm	29
G	Numerical implementation of the Cauchy distribution	30
н	Justification of unit prefixes	30
Ι	Source code	31

Declaration of work undertaken

The work was distributed thematically: I focused on the theoretical aspects while my project partner focused on the writing of the computer program. The formal application of a Wick rotation is of my invention. The writing of the C++ program was mainly done by my project partner and partially by me. Debugging was done by both. All figures and all appendices are of my own production. All results were produced by me, expect those of the free-R model of the hydrogen bond, produced by my project partner. No summer placements or previous works have been conducted with the supervisor and this project is not an extension of any previous work.

1 Introductory chapter

1.1 Motivation

Most of atomistic numerical simulations of chemical, biological and material systems treat nuclei as classical particles and only electrons as quantum mechanical entities. This approximation, dictated by computational limitations, neglects nuclear quantum effects (NQE) and hence it makes impossible to study fundamental properties dependent of them [1]. Feynman's path integral formalism can be used to to reduce the computational cost generated when accounting for these NQE. Its direct numerical evaluation is computationally too expensive and perturbative expansions fail for some systems, therefore a Monte Carlo approach is used [2].

1.2 Aims and objectives

The first aim of this project is to understand the path integral formulation of quantum mechanics and apply it to write a quantum Monte Carlo computer program. The objective is to get a full picture of the path integral formalism, maintain theoretical clarity in derivations, justify every mathematical step, give great importance to mathematical details and their physical implications, and to use all the grasped knowledge to write a C++ programme. Specifically, an objective is to formulate and apply a Wick rotation formally.

The second aim of this project is to apply this computer program to simulate quantum toy models, to compare them with theoretical predictions, and to simulate the hydrogen bond interaction to numerically investigate NQE and the secondary geometric isotope effect. For toy models, the objective is to simulate a particle in an infinite well, double well and in an harmonic potential, and measure its zero-point energy (ZPE), size and its position probability density function with varying temperature. For the hydrogen bond the objective is to measure ZPEs and bond lengths under different conditions.

2 Discussions of the methods employed

Along this report we use the conventions stated in app. (A).

2.1 Feynman's path integral formalism

2.1.1 Justification

Consider a particle of mass m [kg] trapped in a potential V(x) [J] independent of time in a one-dimensional Universe. Given an Hamiltonian operator \hat{H} , the evolution in time t [s] of the quantum state $|\psi(t)\rangle$ is the solution of the Schrödinger equation

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \left| \psi(t) \right\rangle = \hat{H} \left| \psi(t) \right\rangle, \tag{1}$$

where $\hbar = 1.055 \cdot 10^{-34}$ Js [3] is the reduced Planck constant. If at t = 0 s the state is $|\psi(0)\rangle$ then the solution of eq. (1) is $|\psi(t)\rangle = \hat{U}(t,0) |\psi(0)\rangle$, where

$$\hat{U}(t_f, t_i) := \exp\left(-\frac{i}{\hbar}(t_f - t_i)\hat{H}\right)$$
(2)

is the time evolution operator that evolves quantum states from time t_i [s] to t_f [s] [4, p.10]. An interesting mathematical observation is

$$|\psi(t_f)\rangle = \hat{U}(t_f, t_i) |\psi(t_i)\rangle = \hat{U}(t_f, t_i) I_{x_i} |\psi(t_i)\rangle = \int_{\mathbb{R}} \hat{U}(t_f, t_i) |x_i\rangle \langle x_i | \psi(t_i)\rangle \,\mathrm{d}x_i, \tag{3}$$

hence multiplying on the left by the position eigenstate $\langle x | = \langle x_f |, x [m], we get [2] \rangle$

$$\psi(x_f, t_f) = \int_{\mathbb{R}} K(x_f, t_f; x_i, t_i) \psi(x_i, t_i) \mathrm{d}x_i, \qquad (4)$$

where

$$K(x_f, t_f; x_i, t_i) = K(f, i) := \left\langle x_f \left| \hat{U}(t_f, t_i) \right| x_i \right\rangle$$
(5)

is called the propagator [5]. Notationally $i \equiv (x_i, t_i)$ and $f \equiv (x_f, t_f)$ in K(f, i).

2.1.2 Derivation of the path integral

Feynman's path integral arises as a consequence of the explicit calculation of K(f, i), given in app. (B). It is found that [5]

$$K(f,i) = \lim_{N \to \infty} \int_{\mathbb{R}} \mathrm{d}x_1 \cdots \int_{\mathbb{R}} \mathrm{d}x_{N-1} A_{\varepsilon}^N \exp\left(\varepsilon \frac{i}{\hbar} \sum_{k=1}^N \left[\frac{m}{2} \left(\frac{x_k - x_{k-1}}{\varepsilon}\right)^2 - V(x_{k-1})\right]\right), \quad (6)$$

where $\varepsilon = (t_f - t_i)/N$, $x_0 = x_i$, $x_N = x_f$ and $A_{\varepsilon} := \sqrt{m/(2\pi i\hbar\varepsilon)}$. The physical interpretation of K(f,i) is deduced by recognising the discrete approximation of the action S[x(t)] [Js] of a path $x(t) : [t_i; t_f] \to \mathbb{R}$. If we interpret $\varepsilon = (t_f - t_i)/N$ as a time step and we identify $x_k = x(t_i + k\varepsilon) = x(t_k)$ at time slice t_k then [4, p.12]

$$\varepsilon \sum_{k=1}^{N} \left[\frac{m}{2} \left(\frac{x_k - x_{k-1}}{\varepsilon} \right)^2 - V(x_{k-1}) \right] \approx \int_{t_i}^{t_f} \left[\frac{1}{2} m \dot{x}^2 - V(x) \right] \mathrm{d}t = S[x(t)]. \tag{7}$$

For each infinitesimal volume element $dV = dx_1 \cdots dx_{N-1}$ of \mathbb{R}^{N-1} the $A_{\varepsilon}^N \exp(iS[x(t)]/\hbar) dV$ contribution is added to the overall infinite sum. The contribution only depends on (x_1, \ldots, x_{N-1}) and the (N-1)-integral varies each of these coordinates: the physical interpretation is that each contribution comes from one specific path, represented by its discretization (x_1, \ldots, x_{N-1}) , of all the infinite possible ones from x_0 to x_N [4, p.12]. This concept of summation over all possible paths defines the path integral [5]

$$\int \exp\left(\frac{i}{\hbar}S[x(t)]\right) \mathrm{D}x(t) := K(f,i).$$
(8)

2.2 Wick rotation and Euclidean action

2.2.1 Justification

In general $K(f, i) \in \mathbb{C}$: in sight of numerical treatment we want to only consider real-valued quantities [2]. K(f, i) can become real-valued under three conditions: if by analytic continuation paths $x(t) : \mathbb{R} \to \mathbb{R}$ are allowed to be such that $x(t) : \mathbb{C} \to \mathbb{C}$, if we assume that the physical model evolves in time along the negative imaginary axis $t \in i\mathbb{R}_-$, and if a $\pi/2$ -rotation on the complex plane of times, called a Wick rotation, is performed to rotate imaginary-valued times back into real-valued times [4, p.56].

2.2.2 Derivation of the Euclidean action

It is standard practise in the literature (see [2, 4, 6, 7]) to perform the Wick rotation in eq. (6) as a mere substitution $t \to ti =: \tau$ [s], where $\tau \in \mathbb{R}$ is called the imaginary time and $t \in \mathbb{R}_{-}$ [2]. In this work we apply the Wick rotation more formally with mathematical arguments of our own invention: this allows a deeper understanding of its implications.

Consider a general continuous function $f : \mathbb{C} \to \mathbb{C}$. Define $\tilde{f} : \mathbb{C} \to \mathbb{C}$ to be such that $\tilde{f}(zi) = f(z)$ for all $z \in \mathbb{C}$. In app. (C) we prove useful properties of \tilde{f} . Let $a, b \in \mathbb{R}$ such that a < b and consider the integral

$$\int_{[-ai,-bi]} f(z) dz = \int_{a}^{b} f(z(\lambda)) \dot{z}(\lambda) d\lambda = -i \int_{a}^{b} f(-\lambda i) d\lambda,$$
(9)

where the line [-ai, -bi] has been parametrized by $z(\lambda) = -\lambda i$ for $\lambda \in [a; b]$. Then using the same parametrization

$$\int_{[-ai,-bi]} f(z) dz = \int_{[-ai,-bi]} \tilde{f}(zi) dz = -i \int_a^b \tilde{f}(\lambda) d\lambda.$$
(10)

Now Wick rotate the line $[-ai, -bi] \rightarrow [a, b]$ and compute the integral of \widetilde{f} along it:

$$\int_{[a,b]} \tilde{f}(z) dz = \int_{a}^{b} \tilde{f}(\lambda) d\lambda,$$
(11)

where this time we used the parametrization $z(\lambda) = \lambda$. This proves that

$$\int_{[-ai,-bi]} f(z) \mathrm{d}z = \frac{1}{i} \int_{[a,b]} \widetilde{f}(z) \mathrm{d}z.$$
(12)

The above result is now applied to the path integral: recall that $t_i, t_f \in i\mathbb{R}_-$. Using properties in eq. (69) we see that the action becomes

$$S[x(t)] = \int_{[t_i, t_f]} \left[\frac{m}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t}(t) \right)^2 - V(x(t)) \right] \mathrm{d}t = -\frac{1}{i} \int_{[it_i, it_f]} \left[\frac{m}{2} \left(\frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tau}(\tau) \right)^2 + V(\tilde{x}(\tau)) \right] \mathrm{d}\tau,$$
(13)

where we also changed the name of the integration variable to τ . By definition $\tilde{x}(\tau) = \tilde{x}(ti) = x(t)$, hence $\tilde{x}(\tau) \in \mathbb{R}$. This motivates us to define the Euclidean action $S_E[\tilde{x}(\tau)]$ [Js] as [2]

$$S_E[\tilde{x}(\tau)] := \int_{[\tau_i,\tau_f]} \left[\frac{m}{2} \left(\frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tau}(\tau) \right)^2 + V(\tilde{x}(\tau)) \right] \mathrm{d}\tau = \int_{\tau_i}^{\tau_f} H\left(\tilde{x}(\tau), \frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tau}(\tau) \right) \mathrm{d}\tau, \qquad (14)$$

where $\tau_i = it_i$, $\tau_f = it_f$ and clearly $S_E[\tilde{x}(\tau)] \in \mathbb{R}$. We recognise the presence of the time independent classical Hamiltonian $H(x, \dot{x})$ [J]. The relationship between the two actions is

$$S[x(t)] = iS_E[\tilde{x}(\tau)], \tag{15}$$

therefore the path integral becomes a real quantity [2]

$$\int \exp\left(\frac{i}{\hbar}S[x(t)]\right) \mathrm{D}x(t) = \int \exp\left(-\frac{S_E[\tilde{x}(\tau)]}{\hbar}\right) \mathrm{D}\tilde{x}(\tau)$$
$$= \lim_{N \to \infty} \int_{\mathbb{R}} \mathrm{d}\tilde{x}_1 \cdots \int_{\mathbb{R}} \mathrm{d}\tilde{x}_{N-1} A_{\delta\tau}^N \exp\left(-\frac{\delta\tau}{\hbar} \sum_{k=1}^N \left[\frac{m}{2} \left(\frac{\tilde{x}_k - \tilde{x}_{k-1}}{\delta\tau}\right)^2 + V(\tilde{x}_{k-1})\right]\right), \tag{16}$$

where $\delta \tau = i\varepsilon$ [s] and we defined the constant $A_{\delta\tau} := A_{\varepsilon = -i\delta\tau} = \sqrt{m/(2\pi\hbar\delta\tau)}$. Notice that $\tilde{x}_k = \tilde{x}(\tau_k) = x(t_k) = x_k$, therefore the tilde symbol can be dropped $\tilde{x}_k = x_k$.

2.3 Measurement of the zero-point energy

2.3.1 Justification

Denote $\{|n\rangle\}_{n\in\mathbb{N}}$ the energy eigenstates of the QM system, $\{E_n\}_{n\in\mathbb{N}}[J]$ their eigenenergies and suppose E_0 is not degenerate. We want to compute the ZPE $E_0 = \langle 0|\hat{H}|0\rangle$. Consider the system under the statistical mechanics (SM) formalism at thermal equilibrium where the possible microstates are $\{|n\rangle\}_{n\in\mathbb{N}}$ and they follow the Boltzmann distribution [2]. Microstates probabilities are denoted $p_n \in [0; 1]$. We want to find a link between the partition function of the system

$$Z(\beta) := \sum_{n=0}^{\infty} e^{-\beta E_n/\hbar}, \quad \text{with} \quad \beta := \frac{\hbar}{k_B T_K}, \quad (17)$$

and the real-valued path integral in eq. (16). β [s] is the thermodynamic temperature, T_K [K] is the temperature of the system and $k_B = 1.381 \cdot 10^{-23}$ J/K [3] the Boltzmann constant. Clearly $p_n = \exp(-\beta E_n/\hbar)/Z(\beta)$.

A connection between $Z(\beta)$ and eq. (16) exists under the condition that periodic boundary conditions (PBCs) are forced to all paths, meaning that imaginary time is cyclic.

2.3.2 Derivation of the zero-point energy

The following derivation has been modified, clarified and expanded from reference [4, p.56-57].

 E_0 is clearly the SM average energy of the system in the limit of close to the absolute zero temperatures $\beta \to \infty$:

$$\lim_{\beta \to \infty} \langle E \rangle_{\rm SM} = \lim_{\beta \to \infty} \frac{\sum_{n=0}^{\infty} E_n e^{-\beta E_n/\hbar}}{\sum_{n=0}^{\infty} e^{-\beta E_n/\hbar}} = \lim_{\beta \to \infty} \frac{e^{-\beta E_0/\hbar} (E_0 + E_1 e^{-\beta (E_1 - E_0)/\hbar} + \cdots)}{e^{-\beta E_0/\hbar} (1 + e^{-\beta (E_1 - E_0)/\hbar} + \cdots)} = E_0.$$
(18)

Indeed, as E_0 is not degenerated, $E_k - E_0 > 0$ for k > 0. In terms of $Z(\beta)$:

$$E_0 = \lim_{\beta \to \infty} \frac{\sum_{n=0}^{\infty} E_n e^{-\beta E_n/\hbar}}{\sum_{n=0}^{\infty} e^{-\beta E_n/\hbar}} = \lim_{\beta \to \infty} -\hbar \frac{\partial}{\partial \beta} \ln Z(\beta).$$
(19)

 $Z(\beta)$ can be written in the bra-ket notation:

$$Z(\beta) = \sum_{n=0}^{\infty} \left\langle n \left| I_{x'} e^{-\beta \hat{H}/\hbar} \right| n \right\rangle = \sum_{n=0}^{\infty} \int_{\mathbb{R}} dx' \left\langle n \left| x' \right\rangle \left\langle x' \right| e^{-\beta \hat{H}/\hbar} \right| n \right\rangle$$

$$= \int_{\mathbb{R}} dx' \sum_{n=0}^{\infty} \left\langle x' \left| e^{-\beta \hat{H}/\hbar} \right| n \right\rangle \left\langle n \left| x' \right\rangle = \int_{\mathbb{R}} dx' \left\langle x' \left| e^{-\beta \hat{H}/\hbar} I_n \right| x' \right\rangle.$$
 (20)

This is equivalent to eq. (5) if one sets $x_i = x_f = x'$ and $t_i = 0$, $t_f = -\beta i$: the position conditions are the PBCs while the time ones identify the thermodynamic temperature with the imaginary time $Ti = \beta$, where we denote $T = t_f$ the cyclic imaginary-valued time. \hbar in eq. (17) forces β to have time units. Knowing $\beta = iT$:

$$Z(\beta) = \int_{\mathbb{R}} dx' \left\langle x' \left| e^{-iT\hat{H}/\hbar} \right| x' \right\rangle = \int_{\mathbb{R}} dx' \left\langle x' \left| \hat{U}(T,0) \right| x' \right\rangle$$

$$= \int_{\mathbb{R}} dx' \int \exp\left(\frac{i}{\hbar} S[x(t)]\right) Dx(t) = \int_{\mathbb{R}} dx' \int \exp\left(-\frac{S_E[\tilde{x}(\tau)]}{\hbar}\right) D\tilde{x}(\tau).$$
 (21)

Paths in the path integral are such that $x(0) = x(T) = x' \Leftrightarrow \tilde{x}(0) = \tilde{x}(\beta) = x'$. The external integral over x' takes care that all possible PBCs are considered.

Eq. (21) gives the link between $Z(\beta)$ and the path integral. In app. (D) eq. (21) is injected into eq. (19) using its limit definition in eq. (16) that implies $\beta = N\delta\tau$ and $x_0 = x_N$: the complete computation is performed there, here we highlight two conceptually important steps of that calculation. The general result of app. (D), which can be guessed from eq. (19), is that E_0 can be seen as

$$E_0 = \lim_{\substack{\beta \to \infty \\ N \to \infty}} \left\langle F(\tilde{\mathbf{x}}) \right\rangle, \tag{22}$$

where $F : \mathbb{R}^N \to \mathbb{R}$ is seen as a function of N random variables $\tilde{\mathbf{x}} = (\tilde{x}_0, \dots, \tilde{x}_{N-1})$ that are distributed according to the multi-variable probability density function (PDF)

$$\omega(\tilde{\mathbf{x}}) := \frac{e^{-S_E[\tilde{\mathbf{x}}]/\hbar}}{\int_{\mathbb{R}} \mathrm{d}\tilde{x}_0 \int_{\mathbb{R}} \mathrm{d}\tilde{x}_1 \cdots \int_{\mathbb{R}} \mathrm{d}\tilde{x}_{N-1} e^{-S_E[\tilde{\mathbf{x}}]/\hbar}},\tag{23}$$

whose multi-variable integral is 1 and $\omega(\tilde{\mathbf{x}}) > 0$. $S_E[\tilde{\mathbf{x}}]$ is the discretized Euclidean action found in eq. (16). In app. (D) we compute two different forms of F.

The first expression of F is obtained by introducing at one line of the derivation in app. (D) an arithmetic average over all N time slices t_k of the Hamiltonian, associated to a path $\tilde{x}(\beta)$, at time t_k with $0 \le k \le N-1$. This can be done because time is cyclic and therefore any time $\tau \in [0; \beta]$ can be chosen as the end time of one cycle of time [6]. This is also done because numerically the average reduces statistical errors [6]. By doing so it is obtained [4, p.57]

$$F_K(\tilde{\mathbf{x}}) = \frac{1}{N} \sum_{k=1}^N \left[\frac{m}{2} \left(\frac{\tilde{x}_k - \tilde{x}_{k-1}}{\delta \tau} \right)^2 + V(\tilde{x}_k) \right].$$
(24)

Using F_K is not suitable for numerical implementations because of $1/\delta\tau$ terms [4, p.57].

The second expression of F removes $1/\delta\tau$ terms by applying the Virial theorem to eq. (24). In app. (E) we show $\langle 0|\hat{T}|0\rangle = \langle 0|xV'(x)/2|0\rangle$, which justifies the substitution of the kinetic terms in eq. (24) with (first derivative) potential-like terms [4, p.57]:

$$F_V(\tilde{\mathbf{x}}) = \frac{1}{N} \sum_{k=1}^N \left[V\left(\tilde{x}_k\right) + \frac{\tilde{x}_k}{2} V'\left(\tilde{x}_k\right) \right].$$
(25)

2.4 Numerical implementation

2.4.1 Justification of the Metropolis-Hastings algorithm

Given the PDF in eq. (23), a numerical evaluation of eq. (22) requires N integrals, each discretized into N integration points, hence the time complexity of the computation grows as $O(N^N)$. This asymptotic behaviour, called 'the curse of dimensions' [4, p.58], makes a direct numerical evaluation of eq. (22) practically impossible. In order to avoid inordinately long computational times, E_0 is estimated as [4, p.58]

$$E_0 = \lim_{\substack{\beta \to \infty \\ N \to \infty}} \langle F(\tilde{\mathbf{x}}) \rangle \approx \frac{1}{M} \sum_{l=1}^M F(\tilde{\mathbf{x}}^l) =: E_{\mathrm{M}},$$
(26)

where $\tilde{\mathbf{x}}^{l} = (\tilde{x}_{0}^{l}, \dots, \tilde{x}_{N-1}^{l})$ is one of the *M* realisations of $\tilde{\mathbf{x}}$ $(1 \leq l \leq M)$ and M, N, β are assumed large. The error on E_{M} is [4, p.58]

$$\Delta E_{\mathrm{M}} = \frac{s_{F(\tilde{\mathbf{x}})}}{\sqrt{M}} = \sqrt{\frac{1}{M} \left[\left\langle F(\tilde{\mathbf{x}})^2 \right\rangle - \left\langle F(\tilde{\mathbf{x}}) \right\rangle^2 \right]} = \sqrt{\frac{1}{M} \left[\frac{1}{M} \sum_{l=1}^M F\left(\tilde{\mathbf{x}}^l\right)^2 - \left(\frac{1}{M} \sum_{l=1}^M F(\tilde{\mathbf{x}}^l) \right)^2 \right]},\tag{27}$$

where $s_{F(\tilde{\mathbf{x}})}$ is the standard deviation of $F(\tilde{\mathbf{x}})$. Numerical results are presented as $E_{\mathrm{M}} \pm \Delta E_{\mathrm{M}}$. The realisations $\tilde{\mathbf{x}}^{l}$ are numerically generated through the Metropolis-Hastings algorithm (MHA) which randomly samples the distribution in eq. (23) with an importance sampling criteria, hence this approach to compute E_0 is a Monte Carlo method [7]. The MHA produces a Markov chain $\tilde{\mathbf{x}}^0 \to \tilde{\mathbf{x}}^1 \to \cdots \to \tilde{\mathbf{x}}^I$ (a random walk in the state space of discretized paths $\tilde{\mathbf{x}}$) where each path $\tilde{\mathbf{x}}^j$ (except $\tilde{\mathbf{x}}^0$) only depends on the previous one $\tilde{\mathbf{x}}^{j-1}$ and it is selected more likely in the highest probable regions of \mathbb{R}^N given by eq. (23) [7]. Each generation of a path is called a sweep, hence in the previous chain I sweeps have been performed: I is called the Monte Carlo time [2].

2.4.2 Steps of the Metropolis-Hastings algorithm

Starting from the initial condition $\tilde{\mathbf{x}}^0$, the MHA runs as follows [2]:

- 1. Given the current *j*-th path, propose a possible (j + 1)-th path $\tilde{\mathbf{x}}'$ by applying one of the available moves stated in sec. (2.4.3). The move is randomly chosen according to a specified moves distribution P_M (see sec. (2.4.5));
- 2. Compute $r = \omega(\tilde{\mathbf{x}}')/\omega(\tilde{\mathbf{x}}^j) = \exp(-\Delta S_E/\hbar)$ (the denominator of eq. (23) is not computed), with $\Delta S_E := S_E[\tilde{\mathbf{x}}'] - S_E[\tilde{\mathbf{x}}^j]$ being the change in Euclidean action between $\tilde{\mathbf{x}}'$ and $\tilde{\mathbf{x}}^j$, and accept the move with probability $p = \min(1, r)$: if accepted, set $\tilde{\mathbf{x}}^{j+1} = \tilde{\mathbf{x}}'$, otherwise set $\tilde{\mathbf{x}}^{j+1} = \tilde{\mathbf{x}}^j$;
- 3. If j + 1 < I set $j \rightarrow j + 1$ and go back to step 1, otherwise stop here.

The MHA always (p = 1) accepts moves such that $\Delta S_E \leq 0$ and sometimes (p = r < 1) it accepts moves such that $\Delta S_E > 0$ [2].

In app. (F) we prove that the more I is large, the more the chain approaches the stationary distribution equilibrium given by eq. (23) [4, p.59]. This approaching process is called thermalization [7]: we numerically confirm thermalization when $\langle x^2 \rangle^j := [(x_0^j)^2 + \cdots + (x_{N-1}^j)^2]/N \,[\mathrm{m}^2]$ stabilises along sweeps after a certain measured R-th sweep [2], called the thermalisation time. No measurement $F(\tilde{\mathbf{x}}^l)$ is performed before the R-th sweep, thus the choice of $\tilde{\mathbf{x}}^0$ is arbitrary [4, p.62]. A cold start is defined as $\tilde{\mathbf{x}}^0 = \mathbf{1}\xi = (\xi, \ldots, \xi)$ for $\xi \in \mathbb{R}$, while an hot start is defined as $\tilde{\mathbf{x}}^0$ having random components [4, p.62].

2.4.3 Possible propositions of moves and optimisations

Given the current path $\tilde{\mathbf{x}}^{j}$, the proposed path $\tilde{\mathbf{x}}' = (\tilde{x}'_{0}, \dots, \tilde{x}'_{N-1})$ is generated as follows [2, 8]:

- 1. Local move: initially set $\tilde{\mathbf{x}}' = \tilde{\mathbf{x}}^j$, chose a random site x_k^j , a random displacement u [m] either uniformly in the interval $[-h_j; h_j]$, h_j [m], or according to a Cauchy distribution of parameters $(x_0, \gamma) = (0, h_j)$ (see app. (G)) and modify $x'_k = x_k^j + u$. Update $h^j \rightarrow h_{j+1} = h_j \cdot r_A/r_I$: this is done so that the (empirical) acceptance rate per sweep of this move $r_A \in [0; 1]$ converges towards a desired fixed ideal rate $r_I \in [0; 1]$;
- 2. Global displacement: exactly like a local move, but the move $x'_k = x^j_k + u$ is performed at all sites $0 \le k \le N 1$ and it is set $h_j = h_0$ always;
- 3. **Bisection**: select a random site x_k^j , then apply a global displacement but only for the subset of positions $\{x_m^j : m \in [k; (k + \text{floor}((N-1)s_B) \mod N)]\}$ for $s_B \in [0; 1]$;
- 4. Mirror: perform the inversion $\tilde{\mathbf{x}}' = -\tilde{\mathbf{x}}^j$;

- 5. Center of mass displacement: calculate the average position/'center of mass' $\langle x \rangle^j := (x_0^j + \cdots + x_{N-1}^j)/N$ [m] and perform a global displacement with $u = \langle x \rangle^j$;
- 6. Swap: select 2 random particles, select a random initial and final sites x_n^j, x_m^j such that $|x_n^j x_m^j| > 1$ and swap all the sites $x_n^j < x_k^j < x_m^j$ among the two particles. This move is activated only when there are more than 2 particles.

When a new path $\tilde{\mathbf{x}}'$ is proposed, some of its components may be identical to those in $\tilde{\mathbf{x}}^j$, thus when calculating ΔS_E terms dependent of those components would cancel each other. In order to optimise the programme, the computation of ΔS_E is specifically implemented for each move so that only the positions $x'_k \neq x^j_k$ are taken into account [2]. For example, for a local move, only the moved site (potential energy variation) and its two nearest neighbours (kinetic energy variation) are considered.

The MHA is implemented as a C++ programme: source code is available in app. (I).

2.4.4 Units in the programme

Standard SI units are used. Products of quantities that span different order of magnitudes are common, hence it is appropriate to introduce custom prefixes so that a physical quantity q can be expressed as $q = q_N \cdot 10^Q [q]$, where q_N (unitless) is close to unity and Q in the 10^Q prefix is the typical order of magnitude of q. In app. (H) we justify the following values of Q for all the relevant quantities in this work:

$$\begin{split} \hbar &= \hbar_N \cdot 10^{-34} \,\text{Js}, \qquad m = m_N \cdot 10^{-30} \,\text{kg}, \qquad x = x_N \cdot 10^{-10} \,\text{m}, \qquad \delta \tau = \delta \tau_N \cdot 10^{-15} \,\text{s}, \\ k_B &= k_{B,N} \cdot 10^{-23} \,\text{J/K}, \qquad V = V_N \cdot 10^{-20} \,\text{J}, \qquad \omega = \omega_N \cdot 10^{15} \,\text{Hz}, \qquad \beta = \beta_N \cdot 10^{-15} \,\text{s}. \end{split}$$

 ω [Hz] is the angular frequency of an oscillator. This way maximal machine precision is guaranteed as all sums have the same prefix and $\Delta S_E/\hbar$ in r is close to unity. In the C++ programme only q_N quantities are considered and only at the end of simulations q quantities are recovered by multiplying q_N with the correct final prefix, determined analytically.

2.4.5 Parameters required by the programme

Figure 1: A set of N = 10 paths generated by the MHA, starting from a cold start and running I = 100, of a single particle $m_N = 1$. Between each represented path there are J = 20 sweeps. The potential is harmonic with $\omega_N = 10$.

To be ran, the programme needs the following inputs: a choice of potential $V_N(x_N) = V(x_N; \{\mu_i\})$ among those implemented with the value of the parameters $\{\mu_i\}$ defining it (for example ω_N), the mass m_N of a single particle or a list of masses $\{(m_N)_i\}$ where each mass corresponds to an independent particle, the number of sites N and the simulation time β_N

so that $\delta \tau_N = \beta_N / N$, the Monte Carlo time I, the thermalization time R, the stride jump J, the moves distribution $P_M = (P_1, \ldots, P_6)$ where $P_i \in [0; 1]$ and indices refer to the list in sec. (2.4.3), the local move initial h_0 and ideal acceptance ratio r_I , the bisection move relative size $s_B \in [0; 1]$. J is the number of sweeps that have to be discarded between each $F(\tilde{\mathbf{x}}^l)$ measurement, hence I - R = MJ: M is determined by I, R, J. The MHA applies independently to all particles $(m_N)_i \in \{(m_N)_i\}$, hence they don't interact and ΔS_E is individually computed for each of them. Sec. (3.4) uses a modified version of the programme so that ΔS_E is the sum of all the individual Euclidean actions of the simulated particles. Fig. (1) shows the typical appearance of paths generated by the MHA.

2.5 The hydrogen bond

2.5.1 Brief description

An hydrogen bond (H-bond), denoted as the dotted line in $X - H \cdots Y$, is an electrostatic interaction that can occur between molecules (intermolecular) or inside a molecule (intramolecular). The bond arises as a consequence of a polar covalent bond (the solid line in $X - H \cdots Y$) between an hydrogen atom H and an highly electronegative atom X called the donor: because of that the shared valence electrons between X and H are more attracted to X and this induces a positive charge on the H atom (it becomes a proton), which is attracted to another highly electronegative atom Y called the acceptor. [9]

2.5.2 Theoretical model

We follow the same treatment as in [10]. We still denote by H the proton in the H-bond.

Consider a two states quantum system described by the reduced Hilbert space spanned by $|X-H, Y\rangle$ and $|X, H-Y\rangle$, differing only by the bond between H and either X or Y. Denote d(A, B) [m] the distance between two generic particles A and B. Define R := d(X, Y), r := d(X, H) and $r^* := d(H, Y)$. The triangle of vertices given by the positions of the particles X, H, Y, generates the angles ϕ [rad], at the X vertex, and θ [rad], at the Y vertex. By the law of cosines

$$r^* = \sqrt{R^2 + r^2 - 2rR\cos(\phi)},$$
(28)

therefore if $\phi = 0$ then $\theta = 0$ and $r + r^* = R$ as in fig. (2). Given a potential V_z specific to particle $z \in \{X, Y\}$, the effective Hamiltonian is

$$\hat{H} = \begin{pmatrix} V_X & \Delta_{XY} \\ \Delta_{XY} & V_Y \end{pmatrix},\tag{29}$$

where $V_X = V_X(r)$, $V_Y = V_Y(r^*)$ and

$$\Delta_{XY} = \Delta_{XY}(R,\phi,\theta) = \Delta_1 \cos(\phi) \cos(\theta) e^{-b(R-R_1)},\tag{30}$$

where Δ_1 [J], b [1/m], R_1 [m] are constants. $\Delta_{XY} \neq 0$ J is an interacting term that couples the two original states so that they aren't eigenstates. We use the Morse potential

$$V_z(r) = D_z \left(e^{-2a_z(r-r_{0,z})} - 2e^{-a_z(r-r_{0,z})} \right),$$
(31)

where $D_z[J]$, $a_z[1/m]$, $r_{0,z} > 0$ m are constants specific to the z-particle. We only consider systems where the proton affinity of X and Y are the same: hence the z-subscript is dropped and it is $R_1 = 2r_0 + 1/a$. We assume $\phi = 0$, hence $\theta = 0$ and therefore Δ_{XY} is purely exponential and it only depends on R. Fig. (2) summarise the whole model and shows the graph of $V_z(r)$: the bonding energy is D. To find the eigenvalues $\varepsilon_{\pm}[J]$ of \hat{H} compute the characteristic polynomial

$$\chi(\varepsilon_{\pm}) = \det(\hat{H} - \varepsilon_{\pm}\hat{1}) = (V_X - \varepsilon_{\pm})(V_Y - \varepsilon_{\pm}) - \Delta^2 = \varepsilon_{\pm}^2 - \varepsilon_{\pm}(V_Y + V_Y) + (V_X V_Y - \Delta^2)$$
(32)

and find its roots. Using the quadratic formula for $\chi(\varepsilon_{\pm}) = 0$:

$$\varepsilon_{\pm} = \frac{1}{2} \left(V_X + V_Y \pm \sqrt{(V_X + V_Y)^2 - 4(V_X V_Y - \Delta^2)} \right)$$

= $\frac{1}{2} \left(V_X + V_Y \pm \sqrt{(V_X - V_Y)^2 + (2\Delta)^2} \right).$ (33)

 $\varepsilon_+ \geq \varepsilon_-$, hence ε_+ describes an electronic exited state potential energy while ε_{-} describes the electronic ground state potential energy [10]. A Born-Oppenheimer approximation is applied with the potential of the ground state $\varepsilon_{-}(r)$: we only consider the QM motion of H confined in $\varepsilon_{-}(r)$ and we assume X and Y are classically localised and still in space and not influenced by H [10]. The approximation is justified because the masses of X and Y are bigger than the mass of H, hence the motion of H happens on a different time scale as the one of X and Y. Fig. (3) shows the plot of the normalized and shifted ε_{-} potential for three different R. The strength of the H-bond can be characterised by the value of R: if R > 2.6 Å the H-bond is said to be weak (there is a potential barrier around r = 0 Å), if 2.3 Å < R < 2.6 Å it is moderate (the potential barrier $\varepsilon_{-}(R/2) \approx -D$ and if R < 2.3 Å it is strong (there is no potential barrier) [10].

$V \qquad r_0 \qquad r \qquad R - r_0 \qquad R \\ H \qquad H \qquad H \\ D \qquad r \qquad r^* \qquad r^*$

Figure 2: Visualisation and defined quantities of the H-bond model, and the shape of Morse's potential. It is assumed $\phi = \theta = 0$.

2.5.3 Numerical implementation

Reference [10] gives the values: D = 120 kcal/mol hence $D = 83.402 \cdot 10^{-20} \text{ J}$, $a = 2.2 \text{ Å}^{-1}$, $r_0 = 0.96 \text{ Å}$, $\Delta_1 = 0.4D = 2.082 \text{ eV}$ hence $\Delta_1 = 33.361 \cdot 10^{-20} \text{ J}$, $b = 2.2 \text{ Å}^{-1}$ and $\theta = \phi = 0$. The values of r_0 and a give $R_1 = 2.375 \text{ Å}$.

Symmetry moves (sec. (2.4.3)) assume the potential is symmetric around x = 0 Å, therefore a shift of -R/2 is applied to all positions to get better numerical results because then the axis of symmetry of $\varepsilon_{-}(r)$ is shifted from x = R/2to x = 0 Å.

Analytically $\varepsilon_{-}(r) \to 0 \text{ J}$ as $r \to \pm \infty$, but numerically $\varepsilon_{-}(r)$ is a difference of quantities that tend to infinity when $r \to$

Figure 3: Plot of the electronic energy surface ε_{-} with varying R showing the three bond strength regimes.

 $\pm \infty$, hence numerically this difference involves big numbers. It is found empirically that for 8 Å < |r| < 10 Å the programme returns $\varepsilon_{-}(r) = +\inf$ while for 10 Å < |r| it returns $\varepsilon_{-}(r) =$ NaN, hence to avoid this an if statement is implemented to force $\varepsilon_{-}(r) = 0$ for all |r| > 8 Å.

3 Results

3.1 Verification of the Metropolis-Hastings algorithm

Denote ΔS_E^j the *j*-th variation of the *j*-th sweep, with j > 0: if the move is accepted set $\Delta S_E^j = \Delta S_E$, otherwise $\Delta S_E^j = 0$ Js. Then

$$S_E[\tilde{\mathbf{x}}^j] = S_E[\tilde{\mathbf{x}}^0] + \sum_{k=1}^j \Delta S_E^k.$$
(34)

We verify at each sweep j that the value of eq. (34) is the same as the one computed with the discretized formulation of $S_E[\tilde{\mathbf{x}}^j]$ in eq. (16). If all moves are correctly implemented eq. (34) is verified for each sweep, hence if at some sweep eq. (34) is not verified then at least one move is not correctly implemented. Setting $P_i = \delta_{ik}$, the single k-th move can be verified. This was done for all moves and for any sweep eq. (34) was found to be satisfied up to a maximal $10^{-8} \cdot 10^{-20}$ Js error.

Local moves should be attempted on average once every sweep at every position [2]. This was verified in all the simulations of this work: average attempts per site per sweep were always 1 with a maximal 10^{-3} error. It has also be verified in all simulations that r_A converges and then oscillates around r_I with a maximal 10^{-2} error, hence the adaptive interval size h_j is correctly implemented.

3.2 Particle size

3.2.1 Theoretical predictions

Consider a particle in a null potential fully localised at position x = 0 Å at time t = 0 s, $\psi(x,0) = \delta(x)$. $\psi(x,t)$ for t > 0 s is the solution to Schrödinger equation (1) in position representation

$$i\hbar\frac{\partial\psi}{\partial t}(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial^2 x}(x,t) \quad \Leftrightarrow \quad \frac{\partial\psi}{\partial t}(x,t) = \lambda\frac{\partial^2\psi}{\partial x^2}(x,t), \tag{35}$$

where $\lambda = \hbar i / (2m)$. The solution of this PDE is [11]

$$\psi(x,t) = \frac{1}{\sqrt{4\pi\lambda t}} \exp\left(-\frac{x^2}{4\lambda t}\right).$$
(36)

This is a normalized Gaussian curve of variance $\sigma(t)^2 = 2\lambda t$. Because $ti = \tau$, the standard deviation becomes $\sigma(\tau) = \sqrt{\tau \hbar/m}$. We interpret $\sigma(\beta)$ as the size s [m] of the particle [12]. As imaginary time τ increments the particle delocalizes linearly because $\psi(x, t)$ propagates through space [13]. Numerically s is calculated as the average of the estimated σ over all I sweeps:

$$s = \frac{1}{I} \sum_{j=1}^{I} \sqrt{\frac{1}{N} \sum_{k=0}^{N-1} (x_k^j)^2 - \left(\frac{1}{N} \sum_{k=0}^{N-1} x_k^j\right)^2}.$$
(37)

Reference [14] shows $s \leq d := \sqrt{2\hbar/(mT_Kk_B)}$ [m]: if this inequality is not verified then the MHA isn't correctly implemented.

Figure 4: A set of paths generated by the MHA, starting from a cold start. Paths are approximately straight lines with small deviations.

Figure 5: Size of particle against its mass m. Linear regressions (dashed lines) are performed on their respective measured points: their slope is approximately identical.

3.2.2 Numerical results and discussion

All simulations use N = 100, $I = 10^5$, R = 1000, J = 500, $h_0 = 1$, $r_I = 0.5$, $s_B = 0.3$, $P_i = \delta_{i,1}$, $V_N(x_N) \equiv 0$. m_N, β vary but $\delta \tau_N = 0.1$. $\mathbf{\tilde{x}}^0$ is a cold start.

Fig. (4) shows some paths $\tilde{\mathbf{x}}^{j}$ generated by the MHA. After the cold start $\tilde{\mathbf{x}}^{0}$ where $\sigma = 0$, $\sigma \neq 0$ and it oscillates around s. Trajectories are approximately straight lines with small deviations from $\langle x \rangle^{j}$ of the order of 1 Å because sawtooth-like trajectories implies a kinetic price in ΔS_{E} and the MHA accepts more willingly moves with low kinetic price.

Fig. (5) shows in a log-log plot the particle size s as a function of m for multiples β . For all considered β we observe a linear relationship between $\log(s) = x$ and $\log(m) = y$, hence sscales as $s \sim m^{\alpha}$ where $\alpha \in \mathbb{R}$. α is determined by linear regression with MATLAB's function polyfit() using all (x, y) points of same β . For all three β , estimated α are close to -1/2, verifying in the $m_N \in [10^{-2}; 10^2]$ interval the expected $s \sim 1/\sqrt{m}$ relationship.

Intrigued by the spacing between the three interpolation lines in fig. (5), we investigate the behaviour of s with varying β . Fig. (6) shows s as a function of β in a log-log plot. Using the same argument as before, there is a relationship $s \sim \beta^{\alpha}$. The linear regression gives $\alpha = 0.511 \approx 1/2$, verifying in the $\beta_N \in [1; 20]$ interval the expected $s \sim \sqrt{\beta}$ relationship.

Figure 6: Size of a particle with mass $m_N = 1$ against time β . A linear regression (dashed line) is performed on the measured points.

Particle	m_N	$T_K[\mathbf{K}]$	β_N	s [Å]	d [Å]
H	1673	1	7609	0.195	9
0	26567	1	7609	0.049	2.5
Ο	26567	100	76	0.044	0.3

Table 1: Numerical results to confirm the $s \leq d$ inequality.

Tbl. (1) tests and confirms the inequality $s \leq d$ with two particles: the hydrogen atom H and the oxygen atom O respectively of masses $m_N = 1673$ and $m_N = 26567$ [3].

3.3 Application of the Metropolis-Hastings algorithm on toy models

Consider three systems: a particle in either an infinite well, an harmonic or a double well potential. We observe the numerical approximation of the position PDF $|\psi(x)|^2 = |\langle x|\psi\rangle|^2$, denoted $|\phi(x)|^2$, along the variation of specific parameters, such as β , m or parameters that define the potential. When $|\phi(x)|^2$ is compared with $|\psi(x)|^2$ and E_M is compared with E_0 , analytical expressions are used when possible, otherwise numerical approximations are computed in another way than the MHA. $|\phi(x)|^2$ is obtained by plotting a normalized histogram of positions generated considering all x_k^j of all thermalized paths $\tilde{\mathbf{x}}^j$, where $0 \le k \le N-1$ and $R \le j \le I$ [2].

3.3.1 Effect of temperature on the position PDF

We saw in eq. (18) $\langle E \rangle_{\text{SM}} \to E_0$ in the limit $T_K \ll 1$: close to the absolute zero the system has a full QM ground state behaviour, hence $p_n \to \delta_{n0}$ and $\psi(x) = \psi_0(x)$, hence the PDF of the particle position is $|\psi_0(x)|^2$.

Above the absolute zero $p_{n>0} \neq 0$. The higher the temperature, the wider the microstates distribution spreads across the energy spectrum $\{E_n\}_{n\in\mathbb{N}}$: the available microstates population grows in number (more and more n > 0 states become reasonably probable $p_{n>0} \neq 0$) along with its upper energy bound. In the limit $T_K \gg 1$ the system can be observed under the classical SM eye where each microstate is differentiated by the classical position of the particle, considered without kinetic energy [15]. At position x the particle has energy V(x), hence the classical SM partition function is

$$Z_C(\beta) := \int_{\mathbb{R}} e^{-\beta V(x)/\hbar} \mathrm{d}x.$$
(38)

Integration is necessary as $x \in \mathbb{R}$ is continuous hence there are infinite microstates. The analogy with eq. (17) is clear: E_n is substituted with V(x) and the sum over n is substituted with an

integral over x. From $Z_C(\beta)$ we infer the PDF of the particle position

$$p_C(x) = \frac{e^{-\beta V(x)/\hbar}}{Z_C(\beta)}.$$
(39)

We can verify whenever the MHA is correctly implemented if we find in the limit $T_K \ll 1$ that $|\phi(x)|^2 \approx |\psi_0(x)|^2$ and $E_M \approx E_0$, while in the limit $T_K \gg 1$ that $|\phi(x)|^2 \approx p_C(x)$. The temperature limits are numerically implemented by fixing $\delta \tau_N$ and varying β_N or N.

3.3.2 Analytical computations, numerical modelling and results

Figure 7: Variation of $|\phi(x)|^2$ along temperature, compared with $p_C(x)$ and $|\psi_0(x)|^2$, in the infinite well system.

We consider the infinite well potential

$$V(x) = \begin{cases} V_r & \text{if } |x - x_r| < L/2, \\ 0 & \text{if } |x - x_r| \ge L/2, \end{cases}$$
(40)

with $x_r = 0 \text{ Å}, V_r \to -\infty$. L > 0 Å is the length of the well. Numerically this is implemented as

$$V_N(x_N) = \begin{cases} V_{r,N} & \text{if} \quad |x_N - x_{r,N}| < L_N/2, \\ 0 & \text{if} \quad |x_N - x_{r,N}| \ge L_N/2, \end{cases}$$
(41)

where $x_{r,N} = 0$, $L_N \cdot 10^{-10} = L$ and $V_{r,N}$ is taken negatively very large. The ground state wave function is [13]

$$\psi_0(x) = \sqrt{\frac{2}{L}} \cos\left(\frac{\pi x}{L}\right),$$
 (42)

hence the QM position PDF is

$$|\psi_0(x)|^2 \mathrm{d}x = \frac{2}{L_N} \cos\left(\frac{\pi x_N}{L_N}\right)^2 \mathrm{d}x_N.$$
(43)

The introduction of dx_N instead of dx is necessary because in our scaled plots we consider x_N and not x. The SM partition function is

$$Z_C(\beta) = \int_{-L/2}^{L/2} 1 dx = L, \qquad (44)$$

therefore the SM position PDF is

$$p_C(x)\mathrm{d}x = \frac{e^{-\beta V(x)/\hbar}\mathrm{d}x}{L} = \begin{cases} \mathrm{d}x/L & \text{if} \quad |x| < L/2, \\ 0\mathrm{d}x & \text{if} \quad |x| \ge L/2. \end{cases}$$
(45)

Notice how $p_C(x)$ is independent of temperature.

Figure 8: Variation of $|\phi(x)|^2$ along temperature, compared with $p_C(x)$ and $|\psi_0(x)|^2$, in the harmonic system.

We consider the harmonic potential

$$V(x) = \frac{1}{2}m\omega^2 x^2, \qquad (46)$$

with m the mass of the particle and ω the angular frequency of the oscillator that characterises the width of the harmonic well. Numerically this is implemented as

$$V_N(x_N) = \frac{1}{2} m_N \omega_N^2 x_N^2.$$
 (47)

The ground state wave function is [13]

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \exp\left(-\frac{m\omega x^2}{2\hbar}\right), \quad (48)$$

hence the QM position PDF is

$$|\psi_0(x)|^2 \mathrm{d}x = \sqrt{\frac{m_N \omega_N}{10\pi\hbar_N}} \exp\left(-\frac{m_N \omega_N x_N^2}{10\hbar_N}\right) \mathrm{d}x_N.$$
(49)

The ZPE is [13]

$$E_0 = E_{n=0} = \hbar \omega \left(\frac{1}{2} + n\right) \Big|_{n=0} = \frac{\hbar_N \omega_N}{2} \cdot 10^{-19} \,\mathrm{J}.$$
(50)

The form of E_n is simple enough to let us calculate analytically the partition function

$$Z(\beta) = \sum_{n=0}^{\infty} e^{-\beta E_n/\hbar} = e^{-\beta\omega/2} \sum_{n=0}^{\infty} e^{-\beta\omega n} = \frac{e^{-\beta\omega/2}}{1 - e^{-\beta\omega}},$$
(51)

hence the microstates probabilities are

$$p_n(\beta) = \frac{e^{-\beta E_n/\hbar}}{Z(\beta)} = e^{-\beta\omega n} \left(1 - e^{-\beta\omega}\right).$$
 (52)

We see for $\beta \to \infty$ we have $p_n \to \delta_{n0}$, as predicted. The SM partition function is evaluated using the Gauss integral [16]

$$Z_C(\beta) = \int_{\mathbb{R}} \exp\left(-\frac{m\omega^2 x^2 \beta}{2\hbar}\right) \mathrm{d}x = \sqrt{\frac{2\pi\hbar}{m\omega^2\beta}},$$
(53)

hence the SM position PDF is

$$p_C(x)dx = \sqrt{\frac{m\omega^2\beta}{2\pi\hbar}} \exp\left(-\frac{m\omega^2 x^2\beta}{2\hbar}\right) dx$$

$$= \sqrt{\frac{m_N \omega_N^2 \beta_N}{20\pi\hbar_N}} \exp\left(-\frac{m_N \omega_N^2 x_N^2 \beta_N}{20\hbar_N}\right) dx_N.$$
(54)

Figure 9: Variation of $|\phi(x)|^2$ along temperature, compared with $p_C(x)$ and $|\psi_0(x)|^2$, in the double well system.

We consider the double well potential

$$V(x) = V_r \left[1 - \left(\frac{x}{x_r}\right)^2 \right]^2, \qquad (55)$$

with $V_r, x_r > 0$ constants: V_r is the height of the potential barrier between the two wells and x_r is the distance of their minima from x = 0 Å. Numerically this is implemented as

$$V_N(x_N) = V_{r,N} \left[1 - \left(\frac{x}{x_{r,N}}\right)^2 \right]^2 \tag{56}$$

where $V_r = V_{r,N} \cdot 10^{-20}$ and $x_r = x_{r,N} \cdot 10^{-10}$. A numerical approximation of $|\psi_0(x)|^2$ and E_0 are calculated using the MATLAB package Chebfun [17]. The SM partition function is numerically approximated using the integral () function in MATLAB. All those numerical approximations are denoted as they were analytical.

Figure 10: Variation of $|\phi(x)|^2$ along V_r in the double well potential. Tunnelling reduces and the two peaks of $|\phi(x)|^2$ increase.

Figure 11: Variation of $|\phi(x)|^2$ along x_r in the double well potential. Tunnelling reduces and the two peaks of $|\phi(x)|^2$ separate.

ω_N	$E_{\rm M} \left[10^{-20} {\rm J} \right]$	$E_0 \left[10^{-20} \mathrm{J} \right]$
1	5.371 ± 0.180	5.273
2	10.346 ± 0.251	10.546
3	16.055 ± 0.339	15.819
4	20.861 ± 0.326	21.091
5	26.257 ± 0.412	26.364

Table 2: Measured $E_{\rm M}$ of a $m_N = 1$ particle in an harmonic potential for different ω_N .

m_N	$E_{\rm M} \left[10^{-20} {\rm J} \right]$	m_N	$E_{\rm M} \left[10^{-20} {\rm J} \right]$
10^{-6}	5.259 ± 0.169	10^{1}	5.351 ± 0.171
10^{-5}	5.273 ± 0.163	10^{2}	5.470 ± 0.252
10^{-4}	5.273 ± 0.147	10^{3}	5.280 ± 0.149
10^{-3}	5.234 ± 0.169	10^{4}	5.221 ± 0.170
10^{-2}	5.434 ± 0.176	10^{5}	5.288 ± 0.185
10^{-1}	5.301 ± 0.179	10^{6}	5.274 ± 0.174

Table 3: Measured $E_{\rm M}$ of a particle in a $\omega_N =$ 1 harmonic potential for different masses m_N .

In all simulations $m_N = 1$, $I = 10^5$, R = 1000, J = 500, $P_M = (1, 1, 1, 1, 1, 1)$, $h_0 = 5$, $r_I = 0.5$, $s_B = 0.3$. $\delta \tau = 0.1$ is fixed and β_N , N varied. $\tilde{\mathbf{x}}^0$ is an hot start with random positions between [-10; 10] Å. When β is varied, for the infinite well it was taken $L_N = 20$, $V_{r,N} = -10^4$, for the harmonic potential it was taken $\omega_N = 10$ and for the double well it was taken $V_{r,N} = 6$ and $x_{r,N} = 6$. When m is varied in the harmonic potential, it was taken $\omega_N = 1$, $\beta_N = 10$ and it was used $F = F_V$. When V_r is varied in the double well system, it was taken $x_{r,N} = 6$. When x_r is varied, it was taken $V_{r,N} = 5$. On both last cases $\beta_N = 5$.

3.3.3 Discussion of results

General observations for all systems Fig. (7), (8) and (9) show $|\phi(x)|^2$ with varying temperature β_N , compared with $p_C(x)$ and $|\psi_0(x)|^2$. When β_N is the highest (low temperatures) $|\phi(x)|^2$ follows $|\psi_0(x)|^2$, when β_N is the lowest (high temperatures) $|\phi(x)|^2$ follows $p_C(x)$. This proves $|\phi(x)|^2$ is correctly normalized, as $p_C(x)$, $|\psi_0(x)|^2$ are. When temperature is not in a limiting case (β_N is between these two bounds), $|\phi(x)|^2$ is an intermediate PDF between the previous two. In the $\beta \ll 1$ limit, $|\phi(x)|^2$ follows $p_C(x)$ but also shows fluctuations around it. As β gets lower, because $\beta = N\delta\tau$ and $\delta\tau$ is fixed, then also the number of sites $N \sim \beta$ gets lower: less sites compose the paths $\tilde{\mathbf{x}}^j$, hence statistics (like histograms) based on x_k^j are less accurate. More sweeps I or more sites N (a lower $\delta\tau$) would improve the statistics hence $|\phi(x)|^2$. All $|\psi_0(x)|^2$, $p_C(x)$ and $|\phi(x)|^2$ are symmetrical around the x = 0 axis: this was expected as all potentials are also symmetric.

Infinite well We discuss fig. (7). For all β_N cases the $|x| \geq L/2$ region is never explored: a proposed move outside the well region makes ΔS_E extremely high (due to $V_{r,N}$), hence such a move is practically impossible. In the $\beta_N = 10$ case the peak of $|\psi_0(x)|^2$ is not completely reached by $|\phi(x)|^2$: we couldn't find an explanation to this anomaly. In the $\beta_N = 1$ case, fluctuations of $|\phi(x)|^2$ around $p_C(x)$ are distributed in a comb-like pattern. This could be explained recalling fig. (4): inside the well the particle behaves as in a null potential, hence paths $\tilde{\mathbf{x}}^j$ are approximately straight lines, hence all x_k^j tend to accumulate around certain points, the comb-like peaks. In the $\beta_N = 1$ case the two tails of $|\phi(x)|^2$ are not discontinuous at |x| = L/2 but they rather go to zero in a $|\psi_0(x)|^2$ way. This might happen because moves are always limited by an interval $[-h_j; h_j]$, hence the boundaries of the potential $|x| \approx L/2$ are never fully explored. An estimate E_M couldn't be obtained because F_K , F_V depend on $V_{r,N}$, F_K gives inconsistent results (it is a bad estimator) and F_V considers V'(x), which is null for |x| < L/2.

Harmonic potential We discuss fig. (8). For $\beta_N \in \{5, 10\}$, $|\phi(x)|^2$ follows almost perfectly $|\psi(x)|^2$: there is a peak at x = 0 Å and the PDF exponentially decreases at $x \to \pm \infty$. As temperature gets higher, the peak of $p_C(x)$ gets lower and wider until $p_C(x)$ is followed by $|\phi(x)|^2$: the microstates population is growing so that it includes states where the particle can

be found even further away from x = 0 Å. In tbl. (2) E_0 is contained within the error bars of $E_{\rm M}$ for all ω_N , hence $E_{\rm M}$ correctly estimates E_0 regardless of the shape of the harmonic potential. In tbl. (3) $E_0 = 5.273 \cdot 10^{-20}$ J is contained within the error bars of $E_{\rm M}$ for all m_N : E_0 is independent of m, and we see the same applies to $E_{\rm M}$. m_N in tbl. (3) aren't close to unity, but nevertheless the C++ programme produces accurate and precise results.

Double well We discuss fig. (9). For $\beta_N \in \{5, 10\}, |\phi(x)|^2$ broadly follows $|\psi(x)|$ but $|\phi(x)|^2$ is higher around the peaks and lower around the tails. This could be explained by the asymptotic behaviour of V(x) that goes as x^4 : the potential may be too sharp for the moves, meaning a too high ΔS_E at the tails. As the histogram is normalized, if there are less visited sites at the tails, there will be more at the peaks. $|\psi_0(x)|^2$ shows two dunes, reflecting the presence of two wells. When the temperature is low, $p_C(x)$ displays two distinct sharp peaks. As the temperature gets higher, the two peaks get lower and they start to merge: around x = 0 Å a tunnelling of the potential barrier V_r analogous to $|\psi_0(x)|^2$ emerges. Fig. (10) displays this tunnelling effect. As V_r is increased, $|\phi(x)|^2$ reduces around x = 0 Å and increases around $|x| = x_r$: the cost ΔS_E of a move exploring the x = 0 Å region increases, hence the MHA explores more often the ΔS_E -favourable $|x| = x_r$ regions. The peaks separation in fig. (11) can be explained with a similar argument: as x_r gets larger, the kinetic part of ΔS_E gets bigger and so ΔS_E .

3.4 Hydrogen bond

We simulate an H-bond using two different models: the fixed-R model [10], where X and Y are still at a fixed R, and the free-R model, where X and Y are relatively free to move so R is free to change. H can be substituted with an ionised deuterium atom denoted D [10].

3.4.1 Fixed-R model of the H-bond

Only H in the ε_{-} potential is simulated [10]. Numerical parameters are $m_N = 1673$ for H and $m_N = 3345$ for D [3], N = 100, $\beta_N = 10$, $I = 10^5$, R = 1000, J = 500, $P_M = (1, 1, 1, 1, 1, 1)$, $h_0 = 0.5$, $r_I = 0.8$, $s_B = 0.3$.

3.4.2 Free-*R* model of the H-bond

X,Y and H are simulated simultaneously. The H-bond is either intermolecular or intramolecular, hence X and Y are chemically bonded to other parts of their respective molecule [9]: X and Y can't freely move because of this interaction, but they oscillate around their equilibrium point. We modelize this limitation with an arbitrary trapping potential (given analytically and numerically)

$$V_T(x) = V_r \left(\frac{x - x_r}{L/2}\right)^{20} \quad \Leftrightarrow \quad V_{T,N}(x_N) = V_{r,N} \left(\frac{x_N - x_{r,N}}{L_N/2}\right)^{20},$$
 (57)

where $V_r = V_T(x_r \pm L/2)$, x_r is the equilibrium point and L the size of the equilibrium region. Numerically, for both X and Y, $L_N = 0.3$, $V_{r,N} = 1$ and $\pm x_{r,N}$ is varied (+ for Y, - for X). X and Y don't interact: the interaction between H and both X,Y is given by $\varepsilon_-(r+R')$, which is calculated for every k-site, with $R = (x_k^j)_Y - (x_k^j)_X$ (we set the position of X $(x_k^j)_X < 0$ and Y $(x_k^j)_Y > 0$) and it is centred around $r = [(x_k^j)_Y + (x_k^j)_X]/2$, hence $R' = R/2 - [(x_k^j)_Y + (x_k^j)_X]/2$. Crucially each proposed move for any particle considers the whole Euclidean action $\Delta S_E =$ $(\Delta S_E)_X + (\Delta S_E)_H + (\Delta S_E)_Y$ so that the system is bound as a whole. The global R of a whole simulation is calculated as the average

$$R = \frac{1}{NM} \sum_{l=1}^{M} \sum_{k=0}^{N-1} \left[(x_k^l)_{\mathbf{Y}} - (x_k^l)_{\mathbf{X}} \right].$$
 (58)

The error ΔR on R, computed analogously as $\Delta E_{\rm M}$, was found to be $\Delta R < 10^{-2}$ Å hence it was not plotted in figures. Numerical parameters are $\{(m_N)_i\} = \{m_N, 26567, 26567\}$ where $m_N = 1673$ for H and $m_N = 3345$ for D (last two particles are X = Y = O an oxygen atom) [3], $N = 100, \beta_N = 10, I = 10^5, R = 1000, J = 500, P_M = (1, 0.4, 0.75, 0.4, 0.4, 0)$ (no swaps), $h_0 = 1, r_I = 0.8, s_B = 0.3$.

3.4.3 Measuring the bond length

The length of the H-bond d(X, H) has two definitions [10]:

- 1. $r_C(R)$ [Å]: the classical distance between X and the first encountered minimum of ε_{-} ;
- 2. r_m [Å]: the distance between X and the first encountered peak of $|\psi(x)|^2$.

 $r_C(R)$ is implemented by numerically finding the minimum of ε_- through MATLAB's fminbnd() function, while $r_m \pm \Delta r_m$ is estimated as the center of the first encountered maximal bar of the $|\phi(x)|^2$ histogram (100 bins are used), with half the width of the bar as the error Δr_m on r_m .

3.4.4 Numerical results of both models and discussion

Figure 12: Variation of $|\phi|^2$ along R. Tunnelling reduces and the two peaks of $|\phi|^2$ separate.

Fig. (12) shows $|\phi(x)|^2$ in the fixed-*R* model with varying *R*. $|\phi(x)|^2$ for $R \ge 2.7$ Å isn't symmetric around x = 0 Å. This might be an effect of the MHA on ε_- . $R \ge 2.7$ Å is in the weak bond regime, hence ε_- starts to describe two distant wells separated by a increasingly larger potential barrier (see fig. (3)): tunnelling decreases as *R* increases $(|\phi(x)|^2 \to 0 \text{ around } x_N = 0$ [Å] and the two peaks of $|\phi(x)|^2$ increase and separate) and for $R \ge 2.7$ Å it is almost non-existent. The only way the MHA can visit these wells is by the means of moves such as global displacement, mirror or center of mass displacement, which occur with a fewer frequency than all the other moves. The MHA doesn't switch between the wells often, hence $\tilde{\mathbf{x}}^j$ accumulates around one of them.

Fig. (13) shows the velocity distribution of an H particle in the fixed-R model for R = 2.3 Å. The j-speeds vector $\tilde{\mathbf{v}}^j$ ($R \leq j \leq I$) has components $v_k^j := (x_{k+1}^j - x_k^j)/\delta \tau$ ($0 \leq k < N - 1$), and an histogram is produced over all v_k^j [m/s]. The distribution has the shape of a Gaussian curve centred at v = 0 m/s. Consider the symmetry of $\varepsilon_-(r + R/2)$ around r = 0 Å: the H particle is equally likely to be in one of the two wells, so it switches between them along sweeps. Each migration contributes to one side (v > 0 m/s or v < 0 m/s) of the distribution: overall contributions are symmetric around v = 0 m/s. The distribution decays exponentially as |v| gets larger. Large |v| have an high kinetic cost in ΔS_E , hence the decay is a

Figure 13: Velocity distribution of all thermalized sweeps.

consequence of the MHA: the H particle is more likely to have close to zero kinetic energy (low kinetic cost). The H particle never reaches an speed higher than 10^5 m/s , 0.03% the speed of light: this justifies the use of the path integral formalism as relativistic effects are negligible.

Figure 14: Measured ZPE against R using a proton.

Figure 15: Measured ZPE against R using deuterium.

(14) and (15) show $E_{\rm M}$ Figs. against R for the two models compared with the potential barrier $\varepsilon_{-}(R/2)$ with either H or D. Reference energies for H come from [10]: fig. (14) agrees with them. Qualitatively figs. (14) and (15)are identical, which is expected, and quantitatively they are almost identical, which is not. For a given model, the difference of $E_{\rm M}$ when H \rightarrow D is $\approx 1 \cdot 10^{-20}$ J, hence negligible. The choice of particle is irrelevant: no secondary geometric isotope effect is observed. For a given particle, the difference of $E_{\rm M}$ in the two models is negligible: intrinsic properties of the system don't depend on the model. In the strong bond regime $E_{\rm M} > \varepsilon_{-}(R/2)$, at around R = 2.4 Å they are equivalent and after that point $E_{\rm M} < \varepsilon_{-}(R/2)$. Bond nomenclature is verified: strong bonds overcome the potential barrier, weak ones don't and moderate ones are of the same magnitude. If the system is bound then $E_{\rm M} < -D$: it is always the case except for the last 3 points in both figures in the free-R model. This means after R > 2.8 Å the H-bond breaks.

Figure 16: Measured bond length against R using the fixed-R model.

Figure 17: Measured bond length against R using the free-R model.

Figs. (16) and (17) show $r_m \pm \Delta r_m$ against R for H and D compared with $r_C(R)$ in the two models. Values of R in fig. (17) couldn't be controlled as in fig. (16) because R is not known beforehand. In figs. (16) and (17) $r_C(R)$ is the same because $r_C(R)$ is an analytical property of ε_{-} . In the strong bond regime $r_C(R) = R/2$, as in that regime there is only a single minimum centred between X and Y (see fig. (3)), and empirical bond lengths align well with $r_C(R)$, as $|\phi(x)|^2$ is symmetrical (see fig. (12) for R = 2.3 Å). Then $r_C(x)$ decays as R gets larger in the moderate and weak bond regimes, as in these regimes there are two minima (see fig. (3)) that drive apart as R increases. Denote $(r_m)_{\rm P}, (\Delta r_m)_{\rm P}$ the $r_m, \Delta r_m$ of particle $P \in \{H, D\}$. In the moderate bond regime $r_C(R) \leq (r_m)_D < (r_m)_H$ within errors $(\Delta r_m)_{\rm H}, (\Delta r_m)_{\rm D}$ for both models. In this regime the substitution $H \to D$ decreases r_m , in agreement with reference [10]. At the beginning of the moderate bond regime, only in fig. (17) and only for P = H an increase in r_m with respect to $r_C(R)$ is observed, while [10] observes this phenomena for both $P \in \{H, D\}$ in the fixed-R model.

This phenomena is expected in all models and also for P = D because close to R = 2.3 Åit is $E_0 \approx -D$ (see figs. (14) and (15)). In the weak bond regime no inequality between $(r_m)_{\rm H}, (r_m)_{\rm D}$ can be clearly determined in both models. For both $P \in \{\text{H}, D\}$, in fig. (16) we see $(r_m)_{\rm P} \approx r_C(R)$ while in fig. (17) we see $(r_m)_{\rm P} \geq r_C(R)$. It was expected that figs. (16) and (17) would be qualitatively close to being identical, but instead they differ. A possible error in the MHA implementation could be the cause.

4 Conclusions

Feynman's path integral formulation of quantum mechanics has been understood, justified and presented with theoretical clarity and mathematical rigour. A formal derivation of the Euclidean action by the means of a Wick rotation has been invented and the implications of the latter have been highlighted. A complete quantum Monte Carlo C++ programme has been written and successfully applied to toy models and the H-bond. The MHA was found to be influenced in its execution by simulated system. Computational results regarding properties of the three toy models, namely ZPEs, position PDFs in function of β , and particle sizes, agree with theoretical predictions in the limit of numerical errors. Computational results regarding the H-bond do not agree with expectations: neither NQE (regarding measured ZPEs) nor secondary geometric isotope effect (regarding measured bond lengths) are observed. Tunnelling was observed in toy models and the H-bond. Further expansion of this work could modify the C++ programme to simulate 3D systems: this way phase transitions, usually arising in 2D systems [19], could be observed. More focus could be put in numerically implementing analytical methods to extract higher eigenenergies $E_{n>0}$, such as in [4, p.57]. A more formal study of the execution time of the MHA could give important informations on the optimal values of P_M and r_I : we hypothesise these values are largely potential-dependant. The choice of k-indexes in $S[\tilde{\mathbf{x}}]$, for example approximating the particle's speed with a backward Euler method instead of a forward one, could be altered and differences in the execution of the MHA could be studied.

5 Acknowledgements

I would like to thank our supervisor, Dr. Jarvist Moore Frost, firstly for proposing this interesting project to us and secondly for his guidance through the two terms of work and his willingness to answer all our questions and doubts about the research subject. I would also like to thank my project partner for being able to put up with my strong work passion for this project.

References

- [1] Markland T, Ceriotti M. Nuclear quantum effects enter the mainstream. *Nature Reviews Chemistry*. 2018;2(3): 1-2. Available from: https://doi.org/10.1038/s41570-017-0109.
- [2] Westbroek MJE, King PR, Vvedensky DD, Dürr S. User's guide to Monte Carlo methods for evaluating path integrals. *American Journal of Physics*. 2018;86(4): 1-10. Available from: https://doi.org/10.1119/1.5024926.
- [3] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Available from: https://goldbook.iupac.org/ [Accessed 3rd April 2020].
- [4] Rosenfelder R. Path Integrals in Quantum Physics. Arxiv. [Preprint] 2017. Available from: https://arxiv.org/abs/1209.1315v4.
- [5] Feynman RP, Hibbs AR. Quantum Mechanics and Path Integrals. Emended Edition. New York: Dover Publications Inc.; 2005.
- [6] Thijssen JM. Computational Physics. Second edition. New York: Cambridge University Press; 2007.
- [7] Mittal S, Westbroek MJE, King PR, Vvedensky DD. Path integral Monte Carlo method for the quantum anharmonic oscillator. Arxiv. [Preprint] 2018. Available from: https://arxiv.org/abs/1811.04669.
- [8] Del Maestro A. Path Integral Monte Carlo and the Worm Algorithm in the Spatial Continuum. [Presentation] Université de Sherbrooke. 3rd June 2014.
- [9] Wikipedia. *Hydrogen bond*. Available from: https://en.wikipedia.org/wiki/Hydrogen_bond [Accessed 6th May 2020].
- [10] McKenzie RH, Bekker C, Athokpam B, Ramesh SG. Effect of quantum nuclear motion on hydrogen bonding. *The Journal of Chemical Physics*. 2014;140(17): 1-6. Available from: https://doi.org/10.1063/1.4873352.
- [11] Wikipedia. *Heat equation*. Available from: https://en.wikipedia.org/wiki/Heat_equation [Accessed 6th May 2020].
- [12] Schultz TD. Slow Electrons in Polar Crystals: Self-Energy, Mass, and Mobility. *Physical Review*. 1959;116(3): 528. Available from: https://doi.org/10.1103/PhysRev.116.526.
- [13] Pritchard J. Second Year Quantum Mechanics. [Lecture] Imperial College. 7th October 2019.
- [14] Feynman RP. Statistical Mechanics. A set of lectures. Reading: W. A. Benjamin Inc.; 1972.
- [15] Frost JM. Royal Society University Research Fellow. Personal communication. 6th December 2019.
- [16] Weisstein EW. Gaussian Integral. Available from: http://mathworld.wolfram.com/GaussianIntegral.html [Accessed 3rd April 2020].
- [17] Trefethen N. Double-well Schroedinger eigenstates. Available from: https://www.chebfun.org/examples/ode-eig/DoubleWell.html [Accessed 6th May 2020].

- [18] Weisstein EW. Trotter Product Formula. Available from: http://mathworld.wolfram.com/TrotterProductFormula.html [Accessed 3rd April 2020].
- [19] Christensen K, Moloney NR. Statistical Mechanics 2019-2020. [Lecture] Imperial College. 4th November 2019.
- [20] Wikipedia. Cauchy distribution. Available from: https://en.wikipedia.org/wiki/Cauchy_distribution [Accessed 6th May 2020].
- [21] Taylor EF, Wheeler JA. Spacetime Physics: Introduction to Special Relativity. Second Edition. New York: W.H. Freeman; 1992.

A Conventions of notation

We use the convention $\mathbb{R}_+ := [0; +\infty[$ and $\mathbb{R}_- :=] - \infty; 0]$. Given $a \in \mathbb{C}$ and $B \subset \mathbb{C}$, we denote $aB \subset \mathbb{C}$ the set composed of all elements of B all multiplied by a. For example the negative imaginary axis (including 0) is $i\mathbb{R}_-$.

The identity operator in terms of position eigenstates and energy eigenstates is given respectively by

$$I_x := \int_{\mathbb{R}} \mathrm{d}x \, |x\rangle \, \langle x| \qquad \text{and} \qquad I_n := \sum_{n=0}^{\infty} |n\rangle \, \langle n| \,, \tag{59}$$

where $x \in \mathbb{R}$ and $n \in \mathbb{N}$. We denote with $\hat{1}$ the 2×2 identity matrix.

The notation [a, b], usually written under the integral symbol when calculating complex integrals, signifies a straight line contour oriented from point a to point b, where $a, b \in \mathbb{C}$. For example if a = 0 and b = i then [a, b] = i[0; 1] oriented from 0 to i.

B Complete derivation of the path integral

This derivation is a combination of those found in [4, p.56-57] and [2]. The Hamiltonian $\hat{H} = \hat{T} + \hat{V}$ is separated into its kinetic energy part \hat{T} and its potential energy part \hat{V} . Discretize the time interval $t_f - t_i$ in a lattice composed of $N \in \mathbb{N}$ time steps of duration $\varepsilon = (t_f - t_i)/N$. Let \hat{A}, \hat{B} be two arbitrary operators: Trotter's formula [18] states that

$$e^{\hat{A}+\hat{B}} = \lim_{n \to \infty} \prod_{k=1}^{n} e^{\hat{A}/n} e^{\hat{B}/n}.$$
 (60)

By assuming $N \gg 1$ we can apply Trotter's formula to get

$$K(f,i) = \left\langle x_f \left| e^{-i\varepsilon N(\hat{T}+\hat{V})/\hbar} \right| x_i \right\rangle \approx \left\langle x_f \left| \prod_{k=1}^N e^{-i\varepsilon \hat{T}/\hbar} e^{-i\varepsilon \hat{V}/\hbar} \right| x_i \right\rangle.$$
(61)

If we insert N-1 identity operators in position space between each product then we get

$$K(f,i) \approx \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \left\langle x_N \left| e^{-i\varepsilon \hat{T}/\hbar} e^{-i\varepsilon \hat{V}/\hbar} \right| x_{N-1} \right\rangle \left\langle x_{N-1} \left| e^{-i\varepsilon \hat{T}/\hbar} e^{-i\varepsilon \hat{V}/\hbar} \right| x_{N-2} \right\rangle$$
(62)

$$\cdots \left\langle x_2 \left| e^{-i\varepsilon \hat{T}/\hbar} e^{-i\varepsilon \hat{V}/\hbar} \right| x_1 \right\rangle \left\langle x_1 \left| e^{-i\varepsilon \hat{T}/\hbar} e^{-i\varepsilon \hat{V}/\hbar} \right| x_0 \right\rangle \mathrm{d}x_1 \cdots \mathrm{d}x_{N-1}, \tag{63}$$

where it is denoted $x_i = x_0$, $x_f = x_N$. It is clear that $\hat{V} |x\rangle = V(x) |x\rangle$ hence $\exp(-i\varepsilon \hat{V}/\hbar) |x\rangle = \exp(-i\varepsilon V(x)/\hbar)$. In the momentum representation

$$\hat{T} = \frac{p^2}{2m}$$
 and $|x\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp\left(-\frac{ipx}{\hbar}\right),$ (64)

where $p [\text{kg} \cdot \text{m/s}]$ and, using the Gauss integral [16] (let $a, b \in \mathbb{C} \setminus \{0\}$ with Re(a) > 0)

$$\int_{\mathbb{R}} e^{-ax^2 + bx} \mathrm{d}x = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a}\right),\tag{65}$$

it is possible to compute

$$\left\langle x_{k} \left| e^{-i\varepsilon\hat{T}/\hbar} \left| x_{k-1} \right\rangle = \frac{1}{2\pi\hbar} \int_{\mathbb{R}} \exp\left(\frac{ipx_{k}}{\hbar}\right) \exp\left(-\frac{i\varepsilon p^{2}}{2m\hbar}\right) \exp\left(-\frac{ipx_{k-1}}{\hbar}\right) dp$$

$$= \frac{1}{2\pi\hbar} \int_{\mathbb{R}} \exp\left(-\frac{i\varepsilon p^{2}}{2m} + \frac{ip(x_{k} - x_{k-1})}{\hbar}\right) dp$$

$$= \sqrt{\frac{m}{2\pi i\hbar\varepsilon}} \exp\left(\frac{im}{2\hbar\varepsilon}(x_{k} - x_{k-1})^{2}\right) = A_{\varepsilon} \exp\left(\frac{im}{2\hbar\varepsilon}(x_{k} - x_{k-1})^{2}\right)$$

$$(66)$$

for all k = 1, ..., N, where the constant A_{ε} is defined as

$$A_{\varepsilon} := \sqrt{\frac{m}{2\pi i \hbar \varepsilon}},\tag{67}$$

and hence it can be written

$$K(f,i) \approx A_{\varepsilon}^{N} \int_{\mathbb{R}} \mathrm{d}x_{1} \cdots \int_{\mathbb{R}} \mathrm{d}x_{N-1} \exp\left(\sum_{k=1}^{N} \left[\frac{im}{2\hbar\varepsilon}(x_{k} - x_{k-1})^{2} - i\frac{\varepsilon}{\hbar}V(x_{k-1})\right]\right)$$
$$= A_{\varepsilon}^{N} \int_{\mathbb{R}} \mathrm{d}x_{1} \cdots \int_{\mathbb{R}} \mathrm{d}x_{N-1} \exp\left(\varepsilon\frac{i}{\hbar}\sum_{k=1}^{N} \left[\frac{m}{2}\left(\frac{x_{k} - x_{k-1}}{\varepsilon}\right)^{2} - V(x_{k-1})\right]\right).$$
(68)

C Proof of properties of \tilde{f}

Let $f, g: \mathbb{C} \to \mathbb{C}$ be two continuous functions and define $\tilde{f}: \mathbb{C} \to \mathbb{C}$ to be such that $\tilde{f}(zi) = f(z)$. We assert the following properties:

$$\widetilde{f+g} = \widetilde{f} + \widetilde{g},$$

$$\widetilde{f \circ g} = f \circ \widetilde{g},$$

$$\widetilde{\frac{\mathrm{d}f}{\mathrm{d}z}} = i\frac{\mathrm{d}\widetilde{f}}{\mathrm{d}z}.$$
(69)

The first property follows from the fact that if $\tilde{f}(zi) = f(z)$ and $\tilde{g}(zi) = g(z)$ then $\tilde{f}(zi) + \tilde{g}(zi) = (f + g)(z)$ and this proves that $f + g(zi) = \tilde{f}(zi) + \tilde{g}(zi)$. For the second property consider $\tilde{g}(zi) = g(z)$, then $(f \circ \tilde{g})(zi) = (f \circ g)(z)$ so that $f \circ \tilde{g} = \tilde{f} \circ g$. The third property can be seen by differentiating with respect of z on both sides $\tilde{f}(zi) = f(z)$. This gives

$$\frac{\mathrm{d}}{\mathrm{d}z}\tilde{f}(zi) = i\frac{\mathrm{d}\tilde{f}}{\mathrm{d}z}(zi) = \frac{\mathrm{d}f}{\mathrm{d}z}(z) \tag{70}$$

and therefore $\widetilde{\mathrm{d}f/\mathrm{d}z} = i\mathrm{d}\widetilde{f}/\mathrm{d}z$.

D Explicit calculation for the zero-point energy

Noting $x' = \tilde{x}_0 = \tilde{x}_N$ we can compute

$$E_{0} = \lim_{\beta \to \infty} -\hbar \frac{\partial}{\partial \beta} \ln Z(\beta)$$

$$= \lim_{\beta \to \infty} \frac{-\hbar}{Z(\beta)} \int_{\mathbb{R}} dx' \int \frac{\partial}{\partial \beta} \exp\left(-\frac{S_{E}[\tilde{x}(\tau)]}{\hbar}\right) D\tilde{x}(\tau)$$

$$= \lim_{\beta \to \infty} \frac{1}{Z(\beta)} \int_{\mathbb{R}} dx' \int e^{-S_{E}[\tilde{x}(\tau)]/\hbar} H\left(\tilde{x}(\beta), \frac{d\tilde{x}}{d\tau}(\beta)\right) D\tilde{x}(\tau),$$
(71)

where $H(\tilde{x}(\beta), (d\tilde{x}/d\tau)(\beta))$ is the Hamiltonian of the system. Because time is cyclic any time $\tau \in [0; \beta]$ could have been selected as the end time without changing the physics. Hence, in sight of a numerical implementation, we can take the average over all time slices [6]

$$H\left(\tilde{x}(\beta), \frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tau}(\beta)\right) \approx \frac{1}{N} \sum_{k=1}^{N} H\left(\tilde{x}(k\delta\tau), \frac{\mathrm{d}\tilde{x}}{\mathrm{d}\tau}(k\delta\tau)\right) = \frac{1}{N} \sum_{k=1}^{N} \left[\frac{m}{2} \left(\frac{\tilde{x}_{k} - \tilde{x}_{k-1}}{\delta\tau}\right)^{2} + V(\tilde{x}_{k-1})\right],\tag{72}$$

where the velocity is approximated with a forward Euler scheme. Hence we can continue

$$E_{0} = \lim_{\beta \to \infty} \frac{\int_{\mathbb{R}} \mathrm{d}\tilde{x}_{0} \cdots \int_{\mathbb{R}} \mathrm{d}\tilde{x}_{N-1} \frac{1}{N} \sum_{k=1}^{N} \left[\frac{m}{2} \left(\frac{\tilde{x}_{k} - \tilde{x}_{k-1}}{\delta \tau} \right)^{2} + V(\tilde{x}_{k-1}) \right] e^{-S_{E}[\tilde{x}(\tau)]/\hbar}}{\int_{\mathbb{R}} \mathrm{d}\tilde{x}_{0} \int_{\mathbb{R}} \mathrm{d}\tilde{x}_{1} \cdots \int_{\mathbb{R}} \mathrm{d}\tilde{x}_{N-1} e^{-S_{E}[\tilde{x}(\tau)]/\hbar}}$$

$$= \lim_{\beta \to \infty} \left\langle \frac{1}{N} \sum_{k=0}^{N-1} \left[\frac{m}{2} \left(\frac{\tilde{x}_{k} - \tilde{x}_{k-1}}{\delta \tau} \right)^{2} + V(\tilde{x}_{k-1}) \right] \right\rangle.$$
(73)

E Proof of the Virial theorem

We follow [4, p.57]. Consider the ground state expectation value of the operator $|\hat{x}\hat{p},\hat{H}|$:

$$\left\langle 0 \left| \left[\hat{x}\hat{p}, \hat{H} \right] \right| 0 \right\rangle = \left\langle 0 \right| \hat{x}\hat{p}(\hat{H} \left| 0 \right\rangle) - \left(\left\langle 0 \right| \hat{H} \right) \hat{x}\hat{p} \left| 0 \right\rangle = 0,$$
(74)

where in the last equality we used the fact that $\hat{H} = \hat{T} + \hat{V}$ is hermitian. The commutator can be explicitly computed as

$$\begin{split} \left[\hat{x}\hat{p}, \frac{\hat{p}^2}{2m} + \hat{V} \right] &= -xi\hbar \frac{\partial}{\partial x} \left(V(x) - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \right) + i\hbar \left(V(x) - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \right) \left(x \frac{\partial}{\partial x} \right) \\ &= i\hbar \left[\left(x \frac{\hbar^2}{2m} \frac{\partial^3}{\partial x^3} - xV'(x) - xV(x) \frac{\partial}{\partial x} \right) \\ &+ \left(xV(x) \frac{\partial}{\partial x} - \frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + x \frac{\partial^2}{\partial x^2} \right) \right) \right] \\ &= i\hbar \left(x \frac{\hbar^2}{2m} \frac{\partial^3}{\partial x^3} - xV'(x) - xV(x) \frac{\partial}{\partial x} + xV(x) \frac{\partial}{\partial x} - \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \\ &- \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - x \frac{\hbar^2}{2m} \frac{\partial^3}{\partial x^3} \right) = i\hbar \left(-xV'(x) - \frac{\hbar^2}{m} \frac{\partial^2}{\partial x^2} \right) = i\hbar \left(2\hat{T} - xV'(x) \right) \end{split}$$

because in position representation

hence it is found that

$$\hat{p} = -i\hbar \frac{\partial}{\partial x} \quad \text{and} \quad \hat{p}^2 = -\hbar^2 \frac{\partial^2}{\partial x^2},$$

$$\left\langle 0 \left| \hat{T} \right| 0 \right\rangle = \left\langle 0 \left| \frac{x}{2} V'(x) \right| 0 \right\rangle. \tag{75}$$

F Convergence of the Metropolis-Hastings algorithm

This proof is a mix of those in [19] and [4, p.59]. Consider a large number of identical Markov chains. The probability the move $\mathbf{x} \to \mathbf{y}$ is accepted is given by

$$P(\mathbf{x} \to \mathbf{y}) = T(\mathbf{x} \to \mathbf{y}) \cdot A(\mathbf{x} \to \mathbf{y}), \tag{76}$$

where T is the transfer probability and A the acceptance probability of the move. Assume that for the transfer probability the property of 'Detailed balance'

$$T(\mathbf{x} \to \mathbf{y}) = T(\mathbf{y} \to \mathbf{x}) \tag{77}$$

is verified and consider an acceptance probability of the form

$$A(\mathbf{x} \to \mathbf{y}) = \min(1, r) = \min\left(1, \frac{\omega(\mathbf{y})}{\omega(\mathbf{x})}\right).$$
(78)

Then, the variation of the number of chains that evolve as $\mathbf{x} \to \mathbf{y}$ is

$$\Delta N(\mathbf{x} \to \mathbf{y}) = N(\mathbf{x})P(\mathbf{x} \to \mathbf{y}) - N(\mathbf{y})P(\mathbf{y} \to \mathbf{x}).$$
(79)

At equilibrium ([19] shows that equilibrium is always reached) $\Delta N(\mathbf{x} \to \mathbf{y}) = 0$ for all possible \mathbf{x}, \mathbf{y} , hence

$$\frac{N(\mathbf{y})}{N(\mathbf{x})} = \frac{P(\mathbf{x} \to \mathbf{y})}{P(\mathbf{y} \to \mathbf{x})} = \frac{A(\mathbf{x} \to \mathbf{y})}{A(\mathbf{y} \to \mathbf{x})}.$$
(80)

If $\omega(\mathbf{y}) > \omega(\mathbf{x})$ then r > 1 so that $A(\mathbf{x} \to \mathbf{y}) = 1$ and $A(\mathbf{y} \to \mathbf{x}) = 1/r$. If $\omega(\mathbf{x}) > \omega(\mathbf{y})$ then r < 1 so that $A(\mathbf{x} \to \mathbf{y}) = r$ and $A(\mathbf{y} \to \mathbf{x}) = 1$. In both cases

$$\frac{N(\mathbf{y})}{N(\mathbf{x})} = r = \frac{\omega(\mathbf{y})}{\omega(\mathbf{x})},\tag{81}$$

hence at equilibrium $N(\mathbf{x}) \sim \omega(\mathbf{x})$, which is the assertion.

G Numerical implementation of the Cauchy distribution

The Cumulative distribution function (CDF) of a random variable distributed according to the Cauchy distribution, of parameters $(x_0, \gamma) = (0, h_j)$, is [20]

$$F(x) = \frac{1}{\pi} \arctan\left(\frac{x}{h_j}\right) + \frac{1}{2}.$$
(82)

Its inverse is

$$F^{-1}(y) = h_j \tan\left[\pi\left(y - \frac{1}{2}\right)\right].$$
(83)

If Y is a random variable uniformly distributed in the interval [-1/2, 1/2] then

$$X = F^{-1}(Y) = h_j \tan(\pi Y)$$
(84)

is distributed according to the Cauchy distribution.

H Justification of unit prefixes

We justify the choice of the powers Q. For k_B and \hbar the choice is dictated by their experimental value. For the mass m we are interested to modelize subatomic particles such as electrons or protons, which are of order Q = -30. For the position x we consider atomic distances, which are of the order of 1 Å hence of order Q = -10. For the potential V experimental data show that atomic potentials are of order Q = -20 [10]. For the angular frequency ω of an harmonic oscillator, we see that

$$V(x) = \frac{1}{2}m\omega^2 x^2 = \frac{1}{2}m_N\omega_N^2 x_N^2 \cdot 10^{2Q-50} \,\mathrm{J}$$
(85)

and therefore in order to have a potential of order -20 it must be Q = 15. For $\delta \tau$ we consider the approximation of the kinetic energy

$$K = \frac{1}{2}mv^2 = \frac{1}{2}m_Nv^2 \cdot 10^{-30} \,\mathrm{kg} \approx \frac{1}{2}m_N \left(\frac{\delta x_N}{\delta \tau_N}\right)^2 \cdot 10^{-2Q-50} \,\mathrm{J}.$$
 (86)

The Lagrangian is K - V, therefore having K of the same order as V would be advantaging. Special relativity imposes the range of values [0; c] for the velocities v of bradyons, where c = 299792458 m/s is the speed of light in a vacuum, and relativistic effects have to be taken into account when v > 0.1c [21]. The theoretical framework is not relativistic, therefore we won't account for those effects and we will assume v < 0.1c in our simulations. At this point the most sensible guess of the order of v would be (8 - 1)/2 = 3.5, but instead we chose to assign the order 5 so that for $\delta \tau Q = -15$: in fact this ensures that the order of K is -20 as wished. Finally for the simulation time β recall that $\beta = N\delta\tau$ and therefore the order of β can be the same as $\delta\tau$.

I Source code

Downloadable source code is available at https://github.com/MightyBee/PIMC-Hbonds.

```
1 #define _USE_MATH_DEFINES
2 #include <vector>
3 #include <array>
4 #include <iostream>
5 #include <fstream>
6 #include <string>
7 #include <random>
8 #include <memory>
9 #include <ctime>
10 #include <cmath>
11 #include "ConfigFile.tcc" //Villard L., Computational Physics I-II, EPFL,
     2018-2019.
13
 using namespace std;
14
15 double hbar(10.54571628); // IUPAC
16
 std::mt19937 rng(time(0));
17
18
19
  20
   - theoretically x_0, x_1, ..., x_(N_slices)
                                                        , (N_slices+1) points
21
     we consider boundary conditions, x_0 = x_(N_slices)
22
    - hence we only consider x_0, x_1, ... , x_(N_slices-1) , N_slices points
23
   - to get the "full picture" simply add one more point, equal to x_0
2.4
25
  */
26
  /*###### PLAN OF THE CODE #####//
27
    - Part A : headears
28
        - A.1 : function headers
29
        - A.2 : definitions of class "Potential_ext" and inherited classes
30
        - A.3 : definitions of class "Potential_ext" and inherited classes
31
        - A.4 : definitions of class "System"
32
33
    - Part B : main
34
        - B.1 : parameters acquisition and system initialization
35
        - B.2 : metropolis algorithm
36
        - B.3 : statistics writing
37
38
39
    - Part A : definitions
40
        - C.1 : definitions of the methods of class "Potential_ext" and
                inherited classes
41
        - C.2 : definitions of the methods of class "Potential_ext" and
42
                inherited classes
43
        - C.3 : definitions of the methods of class "System"
44
        - C.4 : function definitions
45
```

```
46
47
48
 */
49
###########################//
PART A : HEADERS
                                  ###########################//
##############################//
56
57
58
 59
61
62
63 // Generate a random (uniform) double between 'min' and 'max'
 double randomDouble(const double& min=0.0, const double& max=1.0,
64
              const bool& closed=true);
65
66
67 // Generate a random double from a normal Cauchy distribution
68 double CauchyDistribution();
69
_{70} // Generate a random double from one of the implemeneted distributions
71 double GenerateDist(const double& h);
72
73
74
77
78
 // Abstract class for external potential
79
80 class Potential_ext {
81 public:
  // pure virtual method => abstract class
82
  // return V at point x
83
  virtual double operator()(const double& x) const = 0;
84
  double e0_estimator(const double& x) const{return 0;};
85
86 }:
87
88
89 // Class for a null potential
90 class PotExt_null: public Potential_ext {
91 public:
  double operator()(const double& x) const {return 0.0;}
92
93 };
94
95
96 // Class for a harmonic potential
97 class PotExt_harm: public Potential_ext {
98 public:
  PotExt_harm(const ConfigFile& configFile);
99
  double operator()(const double& x) const;
100
101 private:
  // mass and squared frequency
102
  double m, omega2;
104 };
```

```
106
107 // Class for a double well potential
108 class PotExt_double: public Potential_ext {
109 public:
110
    PotExt_double(const ConfigFile& configFile);
     double operator()(const double& x) const;
111
112 private:
    // barrier height and position of the wells
113
    double V0, x0;
114
115 };
116
117
118 // Class for a square potential (barrier for VO>O and well for VO<O)
119 class PotExt_square: public Potential_ext {
120 public:
    PotExt_square(const ConfigFile& configFile);
121
    double operator()(const double& x) const;
122
123 private:
    // potential height, position of the centre and width of the square well
124
    double VO, xO, L;
125
126 };
127
128
129 // Class for a sinusoidal potential
130 class PotExt_sin: public Potential_ext {
131 public:
    PotExt_sin(const ConfigFile& configFile);
132
    double operator()(const double& x) const;
133
134 private:
135 // potential height and period
    double VO, L;
136
137 };
138
139
140 // Class for a Lennard-Jones potential
141 class PotExt_LJ: public Potential_ext {
142 public:
    PotExt_LJ(const ConfigFile& configFile);
143
    double operator()(const double& x) const;
144
145 private:
   double V0, x0;
146
147 };
148
149 // Class for a H-bond potential
150 class PotExt_OHbonds: public Potential_ext {
151 public:
    PotExt_OHbonds(const ConfigFile& configFile);
152
    // Morse potential
    double Vmorse(const double& x) const;
154
    // First derivative of Morse potential
155
    double dVmorse(const double& x) const;
156
    // Estimator of zero-point energy
157
    double e0_estimator(const double& x) const;
158
    // Return the value of the potential
159
    double operator()(const double& x) const;
160
161 private:
    // Characteristic constants of the potential
162
     double D, a, r0, delta1, b, R1;
163
    // R : distance between the donor and accpetor
164
165 double R, DELTA;
```

```
166 };
167
168
169
173
174 // Abstract class for internal potential
175 class Potential_int {
176 public:
   // pure virtual method => abstract class
177
   // return V for particle 1,2 at position x1,x2 resp.
178
  virtual double operator()(const double& x1, const double& x2) const = 0;
179
180 };
181
182
183 // Class for a null internal potential (no interactions between particles)
184 class PotInt_null: public Potential_int {
185 public:
  double operator()(const double& x1, const double& x2) const {return 0.0;}
186
187 };
188
189
190 // Class for a harmonic potential between two particles
191 class PotInt_harm: public Potential_int {
192 public:
   PotInt_harm(const ConfigFile& configFile);
193
   double operator()(const double& x1, const double& x2) const;
194
195 private:
   // stifness and rest length
196
   double k, 10;
197
198 };
199
200
201 // Class for a Lennard-Jones potential between two particles
202 class PotInt_LJ: public Potential_int {
203 public:
   PotInt_LJ(const ConfigFile& configFile);
204
   // standard Lennard-Jones potential
205
   double LJ(const double& r) const;
206
   // Lennard-Jones with parameters defined below
207
   double operator()(const double& x1, const double& x2) const;
208
209 private:
  double VO, xO, G;
210
211 };
212
213
214
218
219
_{220} // Class System : - contains all the physical properties of the system
221 //
                  considered, as well as the number of slices
222 //
                - it can generate moves but it's not this class that
223 //
                  will porpose it
224 class System {
225 public:
```

```
226
     // constructor
     System(const ConfigFile& configFile);
227
     // initlaize the system : hot start
228
     void initialize(const double& pos_min, const double& pos_max);
229
     // write in an output file the external potential used
230
     void write_potExt(const string& output);
231
     // return the number of particles in the system
232
     size_t nb_part() const {return N_part;}
233
     // return the number of slices in the system
234
     size_t nb_slices() const {return N_slices;}
235
     // return the number of time each site is visited by MH algorithm
236
     vector<vector<int>> get_visits() const {return verif;}
237
     // write the poisitions of all particles
238
     ostream& write(ostream& output) const;
239
     // return the kinetic term of a particle between a bead and a neighbour
240
     double kinetic(const int& particle, const int& bead, const int& bead_pm,
241
242
                      const double& displacement=0.0) const;
243
     // compute the whole euclidean action directly
     double energy();
244
     // return the euclidean action measured along the simulation's progress
245
     double get_H(){return H;}
246
247
     // returns if a move is accepted or not
     bool metropolisAcceptance();
249
250
251
     // different moves possible
     bool localMove(const double& h);
252
     bool globalDisplacement(const double& h);
253
     bool bisection(const double& h, const double& sRel);
254
     bool swap();
255
     bool inverse();
256
     bool symmetryCM();
257
258
     // energy measures
259
    void measure_energy(double, double);
260
     void average_energy();
261
262
263
264 private:
     ///////
                                      physical parameters
265
     unsigned int N_part;
266
     unsigned int N_slices;
267
268
     double beta;
     double d_tau;
269
270
     int q;
     vector < double > mass;
271
     double omega;
272
    unique_ptr <Potential_ext > ptr_Vext;
273
    unique_ptr <Potential_int > ptr_Vint;
274
     // table of positions : first index indicates the particle
275
                              second index indicates the slice
    11
276
     vector<vector<double>> table;
277
278
     ////// utilitary variables ///////
279
     // mm : time slice randomly selected during each iteration,
280
     // mm_plu=mm+1, mm_min=mm-1 with boundary conditions
281
     unsigned int mm, mm_plu, mm_min;
282
     // particle randomly selected during each iteration
283
284
     unsigned int nn;
     // displacement proposed
285
```

```
286
   double dis;
   // part of the action that is changed by moves
287
   double s_old, s_new;
288
   // euclidean action
289
   double H;
290
291
   vector < double > energies_psi;
292
   vector < double > energies_h;
293
   vector<vector<int>> verif;
294
 };
295
296
 ostream& operator <<(ostream& output, const System& s);</pre>
297
298
299
300
301
302
303
304
305
#############################//
PART B : MAIN
                                    311
 312
313
314
 int main(int argc, char* argv[]){
315
316
317
318
   319
   320
321
   322
323
   // Default input configuration file
324
   string inputPath("configuration.in");
325
   if (argc>1) // specified input file specified by user
326
    inputPath = argv[1];
327
328
   // Parameters are read et stocked in a "map" of strings
329
   ConfigFile configFile(inputPath);
330
331
   for(int i(2); i<argc; ++i) // complementary inputs</pre>
332
    configFile.process(argv[i]);
333
334
335
   336
337
   // number of Monte Carlo iterations (aka sweeps)
338
   unsigned int N_sweeps(configFile.get<unsigned int>("N_sweeps"));
339
   // number of thermalisation sweeps
340
   unsigned int N_thermalisation(configFile.get<unsigned int>("N_thermal"));
341
   // initial minimum position
342
   double pos_min(configFile.get<double>("pos_min"));
343
   // initial maximal position
344
345
   double pos_max(configFile.get<double>("pos_max"));
```

```
// displacement parameter of a point in the path
346
    vector < double > h(3, configFile.get < double >("h"));
347
    // proportion of each move
348
    double p_loc(configFile.get<double>("p_local"));
349
    double p_dsp(configFile.get<double>("p_displacement"));
350
    double p_swap(configFile.get<double>("p_swap"));
351
    double p_inv(configFile.get<double>("p_inverse"));
352
    double p_sym(configFile.get<double>("p_symmetryCM"));
353
    double p_bis(configFile.get<double>("p_bisection"));
354
    // relative size (0 to 1) of bisection move
355
    double s_bis(configFile.get<double>("s_bisection"));
356
    // numbers of tries for each moves
357
    vector<unsigned int> NbTries(6,0);
358
    // acceptance rates for the three moves
359
    vector < double >
                      accrate(6,0.0);
360
    // "instantaneous" acceptance rate for local moves
361
362
    double tmp_accrate(0.0);
363
    // ideal acceptance rate for local moves
    double idrate(configFile.get<double>("idrate"));
364
    // output is written every n_stride iterations
365
    size_t n_stride(configFile.get<size_t>("n_stride"));
366
367
368
    //Output files
369
370
    string output(configFile.get<string>("output"));
    string output_pos(output+"_pos.out");
371
    ofstream fichier_output(output_pos.c_str());
372
    fichier_output.precision(15); // Precision
373
374
    string output_energy(output+"_nrg.out");
375
    ofstream fichier_energy(output_energy.c_str());
376
                                   // Precision
    fichier_energy.precision(15);
377
378
    string output_rate(output+"_rate.out");
379
    ofstream fichier_rate(output_rate.c_str());
380
    fichier_rate.precision(15);
381
382
    // initialization of the system
383
    System s(configFile);
384
    s.initialize(pos_min,pos_max);
385
    s.write_potExt(output);
386
    fichier_output << s << endl;
387
388
    //UNCOMMENT IF YOU WANT TO COMPARE WITH OUTPUT2_NRG.OUT
389
    //s.measure_energy();
390
    //double V0(configFile.get<double>("R"));
391
    //double V0(configFile.get<double>("V0"));
392
    //double x0(configFile.get<double>("x0"));
393
394
    double last_measured_time(time(0));
395
396
397
    398
    399
    400
401
    //For every sweep...
402
    for(size_t i(0); i < N_sweeps; i++){</pre>
403
404
      // show progress of the simulation
405
```

```
if(time(0) - last_measured_time >= 5){
406
          last_measured_time = time(0);
407
         cout << floor((double)i/N_sweeps*100) << " %" << endl;</pre>
408
       }
409
410
       //For every particle...
411
       /*(we try one average each move for each particle one time every sweep
412
         if all moves proportions are set to 1) */
413
       for(size_t j(0); j < s.nb_part(); j++){</pre>
414
415
         //////// local move /////////
416
          /*if proportion of tries compared to the number of sweeps is
417
            smaller than the target, try a move*/
418
         if(NbTries[0]*1.0/((i*s.nb_part()+j+1)*s.nb_slices()) < p_loc){
419
            tmp_accrate=0.0;
420
            for(size_t k(0); k < s.nb_slices(); k++){</pre>
421
              NbTries[0]++;
422
              if(s.localMove(h[0])){
423
                accrate [0]++;
424
                tmp_accrate++;
425
              }
426
           }
427
            tmp_accrate/=s.nb_slices();
428
            // adjust the parametr h to reach the ideal accpetance rate
429
430
           h[0] *= tmp_accrate/idrate;
         }
431
432
         //////// global displacement ////////
433
          /*if proportion of tries compared to the number of sweeps is
434
           smaller than the target, try a move*/
435
         if(NbTries[1]*1.0/(i*s.nb_part()+j+1) < p_dsp){</pre>
436
            NbTries [1]++;
437
            if(s.globalDisplacement(h[1])){
438
              accrate [1]++;
439
            }
440
         }
441
442
         //////// bisection /////////
443
         if(NbTries[2]*1.0/(i*s.nb_part()+j+1) < p_bis){</pre>
444
            NbTries [2]++;
445
            if(s.bisection(h[2], s_bis)){
446
              accrate [2]++;
447
            }
448
         }
449
450
         /////// swap ////////
451
         if(NbTries[3]*1.0/(i*s.nb_part()+j+1) < p_swap){</pre>
452
            NbTries [3]++;
453
            if(s.swap()){
454
              accrate [3]++;
455
            }
456
         }
457
458
         //////// inverse /////////
459
         if(NbTries[4]*1.0/(i*s.nb_part()+j+1) < p_inv){</pre>
460
            NbTries [4]++;
461
            if(s.inverse()){
462
              accrate[4]++;
463
            }
464
         }
465
```

```
466
       //////// symmetryCM
                            467
       if(NbTries[5]*1.0/(i*s.nb_part()+j+1) < p_sym){</pre>
468
         NbTries [5]++;
469
         if(s.symmetryCM()){
470
           accrate[5]++;
471
         }
472
       }
473
     }
474
475
476
      477
     if((i%n_stride) == 0){
478
       fichier_output << s << endl;
479
       fichier_energy << s.energy() << " " << s.get_H() << endl;</pre>
480
       fichier_rate << tmp_accrate << endl;</pre>
481
482
       //Energy measurement
483
       if(i >= N_thermalisation){
484
         //fichier_energy << s.energy() << " " << s.get_H() << endl;</pre>
485
         //s.measure_energy(V0, x0);
486
       }
487
     }
488
    }
489
490
    fichier_output.close();
    fichier_energy.close();
491
    fichier_rate.close();
492
493
494
    495
    496
    497
498
    // statistics on the moves
499
    // number of tries and acceptance's rates
500
    string output_stat(output+"_stat.out");
501
    fichier_output.open(output_stat.c_str());
502
    fichier_output.precision(15);
503
    for(size_t i(0); i<accrate.size(); i++){</pre>
504
      accrate[i]/=NbTries[i];
505
     fichier_output << NbTries[i] << " " << accrate[i] << endl;</pre>
506
    }
507
508
    // statistics on the visits of patricles and slices
509
    for(const auto& part : s.get_visits()){
510
     for(const auto& v : part){
511
       fichier_output << v/(NbTries[0]*1.0/(s.nb_part()*s.nb_slices()))</pre>
512
                     << " ";
513
     }
514
     fichier_output << endl;</pre>
515
    }
516
517
    fichier_output.close();
518
519
520
    //Energy
    s.average_energy();
521
    523
    return 0;
524
525 }
```

```
528
530
534
 535
 536
                                    ##########################
PART C : DEFINITIONS
 #################################//
538
 ##########################//
 540
 541
542
543
 545
546 //############ C.1 : CLASS 'Potential_ext' METHODS DEFINITIONS #############//
 547
548
549
  PotExt_harm
                                ///// constructor /////
551
552 PotExt_harm::PotExt_harm(const ConfigFile& configFile) :
   Potential_ext(),
553
   m(configFile.get<double>("mass")),
554
   omega2(pow(configFile.get<double>("omega"),2))
555
   {}
556
557
558 ///// potential opertor /////
559 double PotExt_harm::operator()(const double& x) const {
   return 0.5 * m * pow(x, 2) * omega2;
560
561
 }
562
563
 564
 ///// constructor /////
565
 PotExt_double::PotExt_double(const ConfigFile& configFile) :
566
   Potential_ext(),
567
   V0(configFile.get<double>("V0")),
568
   x0(configFile.get<double>("x0"))
569
   {}
570
571
572 ///// potential opertor /////
 double PotExt_double::operator()(const double& x) const {
573
   return V0*pow(pow(x/x0,2)-1,2);
574
 }
575
576
577
PotExt_square
                                ///// constructor /////
579
 PotExt_square::PotExt_square(const ConfigFile& configFile) :
580
   Potential_ext(),
581
   VO(configFile.get<double>("VO")),
582
   x0(configFile.get<double>("x0")),
583
   L(configFile.get<double>("L"))
584
585
   {}
```

```
586
  ///// potential opertor /////
587
  double PotExt_square::operator()(const double& x) const {
588
    if(abs(x - x0) < L/2){
589
      return V0;
590
    }else{
591
      return 0;
    }
593
594 }
595
596
  597
598 ///// constructor /////
599 PotExt_sin::PotExt_sin(const ConfigFile& configFile) :
    Potential_ext(),
600
    V0(configFile.get<double>("V0")),
601
    L(configFile.get<double>("L"))
602
603
    {}
604
605 ///// potential opertor /////
606 double PotExt_sin::operator()(const double& x) const {
    return 0.5*V0*(1-cos(2*M_PI/L*x));
607
608 }
609
610
  611
612 ///// constructor /////
613 PotExt_LJ::PotExt_LJ(const ConfigFile& configFile) :
    Potential_ext(),
614
    VO(configFile.get<double>("VO")),
615
    x0(configFile.get<double>("x0"))
616
617
    {}
618
619 ///// potential opertor /////
620 double PotExt_LJ::operator()(const double& x) const {
    return 4 * V0 * (pow(x/x0, -12) - pow(x/x0, -6));
621
622 }
623
///// constructor /////
625
  PotExt_OHbonds::PotExt_OHbonds(const ConfigFile& configFile) :
626
    Potential_ext(),
627
    D(83.402), a(2.2), r0(0.96), delta1(0.4*D), b(2.2), R1(2*r0+1/a),
628
    R(configFile.get<double>("R")),
629
    DELTA(delta1*exp(-b*(R-R1)))
630
    {}
631
632
633 ///// Morse potential /////
634 double PotExt_OHbonds::Vmorse(const double& x) const{
    return D*(exp(-2*a*(x-r0))-2*exp(-a*(x-r0)));
635
636 }
637
638 ///// first derivative of Morse potential /////
639 double PotExt_OHbonds::dVmorse(const double& x) const{
    return 2*a*D*(exp(-a*(x-r0))-exp(-2*a*(x-r0)));
640
  }
641
642
643 ///// potential opertor /////
644 double PotExt_OHbonds::operator()(const double& x) const{
645 if (abs(x) < 8){
```

```
return 0.5*(Vmorse(R/2+x)+Vmorse(R/2-x) - sqrt(pow(Vmorse(R/2+x)-Vmorse(
646
     R/2-x),2)+4*DELTA*DELTA));
    }else{
647
     return 0.0;
648
    }
649
650 }
651
  ///// estimataor of zero-point energy /////
652
  double PotExt_OHbonds::e0_estimator(const double& x) const{
653
    return x/4 * (dVmorse(R/2+x) - dVmorse(R/2-x) - (Vmorse(R/2+x) - Vmorse(R
654
     /2-x))*(dVmorse(R/2+x) + dVmorse(R/2-x))/sqrt(pow(Vmorse(R/2+x) - Vmorse(
     R/2-x), 2) + 4*DELTA*DELTA));
  }
655
656
657
658
659
  660
  661
  662
663
  PotInt_harm #################################//
664
  ///// constructor /////
665
  PotInt_harm::PotInt_harm(const ConfigFile& configFile) :
666
667
    Potential_int(),
    k(configFile.get<double>("k")),
668
    10(configFile.get<double>("10"))
669
    {}
670
671
672 ///// potential opertor /////
  double PotInt_harm::operator()(const double& x1, const double& x2) const {
673
    return 0.5*k*pow(abs(x2-x1)-10,2);
674
675
  }
676
677
  PotInt_LJ
678
  ///// constructor /////
679
680 PotInt_LJ::PotInt_LJ(const ConfigFile& configFile) :
    Potential_int(),
681
    VO(configFile.get<double>("Vmin")),
682
    x0(configFile.get<double>("x0")),
683
    G(configFile.get<double>("G"))
684
    {}
685
686
  ///// standard Lennard-Jones potential /////
687
  double PotInt_LJ::LJ(const double& r) const {
688
    if(r>0.35){
689
     return pow(r,-12)-2*pow(r,-6);
690
   }else{
691
     return pow(0.35,-12)-2*pow(0.35,-6);
692
    }
693
694 }
695
696 ///// potential opertor /////
  double PotInt_LJ::operator()(const double& x1, const double& x2) const {
697
    return V0*LJ(abs(x1-x2)/x0);
698
699
700
701
702
```

```
704
  705
706
707
  constructor
                                            708
709
  System::System(const ConfigFile& configFile) :
    N_part(configFile.get<unsigned int>("N_part")),
710
    N_slices(configFile.get<unsigned int>("N_slices")),
711
    beta(configFile.get<double>("beta")),
712
    d_tau(beta/N_slices),
713
    mass(N_part, configFile.get<double>("mass")),
714
    omega(configFile.get<double>("omega")),
715
    table(N_part, vector<double>(N_slices, 0.0)),
716
    mm(0), mm_plu(0), mm_min(0), nn(0),
717
    dis(0.0), s_old(0.0), s_new(0.0), H(0.0),
718
    verif(N_part, vector<int>(N_slices, 0))
719
    {
720
      for(unsigned int i(0); i<N_part; i++){</pre>
721
        mass[i]=configFile.get<double>("m"+to_string(i+1));
722
      }
723
      // choosing the external potential
724
      string V_ext(configFile.get<string>("V_ext"));
725
      if(V_ext=="null") ptr_Vext = move(unique_ptr<Potential_ext>(new
     PotExt_null()));
      else if(V_ext=="harmonic") ptr_Vext = move(unique_ptr<Potential_ext>(new
727
      PotExt_harm(configFile)));
      else if(V_ext=="double") ptr_Vext = move(unique_ptr<Potential_ext>(new
728
     PotExt_double(configFile)));
      else if(V_ext=="square") ptr_Vext = move(unique_ptr<Potential_ext>(new
729
     PotExt_square(configFile)));
      else if(V_ext=="sin") ptr_Vext = move(unique_ptr<Potential_ext>(new
730
     PotExt_sin(configFile)));
      else if(V_ext=="LJ") ptr_Vext = move(unique_ptr<Potential_ext>(new
     PotExt_LJ(configFile)));
      else if(V_ext=="OHbonds") ptr_Vext = move(unique_ptr<Potential_ext>(new
732
     PotExt_OHbonds(configFile)));
      else{
        cerr << "Please choose a valid potential." << endl;</pre>
734
      }
735
      // choosing the internal potential
736
      string V_int(configFile.get<string>("V_int"));
737
      if(V_int=="null") ptr_Vint = move(unique_ptr<Potential_int>(new
738
     PotInt_null()));
      else if(V_int=="harmonic") ptr_Vint = move(unique_ptr<Potential_int>(new
739
      PotInt_harm(configFile)));
      else if(V_int=="LJ") ptr_Vint = move(unique_ptr<Potential_int>(new
740
     PotInt_LJ(configFile)));
      else{
741
        cerr << "Please choose a valid potential." << endl;</pre>
742
      }
743
    }
744
745
746
  // initialize random paths for each particles
747
  void System::initialize(const double& pos_min, const double& pos_max){
748
    for(auto& particle : table){
749
      for(auto& pos : particle){
750
        pos = randomDouble(pos_min, pos_max);
751
      }
752
```

```
}
753
     H=energy();
754
  }
755
756
757
  void System::write_potExt(const string& output){
758
     string output_pot(output+"_pot.out");
759
     ofstream f_pot(output_pot.c_str());
760
     f_pot.precision(15);
761
     size_t N(10000);
762
     double x(0.0);
763
     for(size_t i(0); i<N; i++){</pre>
764
       double xi(-50.0), xf(50.0);
765
       x=xi+i*(xf-xi)/(N-1);
766
       f_pot << x << " " << (*ptr_Vext)(x) << endl;
767
     }
768
769
     f_pot.close();
770
  }
771
772
  // write the paths of all particles in one line
773
774
  ostream& System::write(ostream& output) const{
     for(const auto& particle : table){
775
       for(const auto& pos : particle){
         output << pos << " ";
777
       3
778
     }
779
780
     return output;
781
  }
782
783
  double System::kinetic(const int& particle, const int& bead, const int&
784
      bead_pm, const double& displacement) const{
     return 0.5*mass[particle]*pow((((table[particle][bead]+displacement)-table[
785
      particle][bead_pm])/d_tau,2);
786
  }
787
  double System::energy(){
788
     double E(0.0);
789
     for(size_t part(0); part<N_part; part++){</pre>
790
       for(size_t bead(0); bead<N_slices; bead++){</pre>
791
         E+=kinetic(part,bead,(bead+1)%N_slices);
792
         E+=(*ptr_Vext)(table[part][bead]);
793
         for(size_t part2(part+1); part2<N_part; part2++){</pre>
794
           E+=(*ptr_Vint)(table[part][bead],table[part2][bead]);
795
         }
796
       }
797
     }
798
799
     return E;
  }
800
801
802
803
  bool System::metropolisAcceptance(){
804
     return ( randomDouble(0,1) <= exp(-(0.1*d_tau/hbar) * (s_new - s_old)) );</pre>
805
806
807
808
809
moves
```

```
812
   bool System::localMove(const double& h){
813
     // random integer between 0 and N_slices-1
814
     mm = rng()%N_slices;
815
     // mm-1 with periodic boundary condition
816
     mm_min = (mm + N_slices - 1)%N_slices;
817
     // mm+1 with periodic boundary condition
818
     mm_plu = (mm + 1)%N_slices;
819
     // random integer between 0 and N_part-1
820
     nn = rng()%N_part;
821
822
     verif[nn][mm]++;
823
824
     dis=GenerateDist(h);
825
826
     /* as we take the difference of new and old action S_new-S_old, we can
827
                                                                                    11
     // consider only the part of the action that is affected by the
                                                                                    11
828
     // proposed new position
                                                                                     */
829
     s_old = kinetic(nn,mm,mm_plu) + kinetic(nn,mm,mm_min)
830
         + (*ptr_Vext)(table[nn][mm]);
831
832
     s_new = kinetic(nn,mm,mm_plu,dis) + kinetic(nn,mm,mm_min,dis)
         + (*ptr_Vext)(table[nn][mm]+dis);
833
834
835
     if(N_part>1){
       for(size_t i(0); i<N_part; i++){</pre>
836
         if(i!=nn){
837
            s_old+=(*ptr_Vint)(table[i][mm],table[nn][mm]);
838
            s_new+=(*ptr_Vint)(table[i][mm],table[nn][mm]+dis);
839
         }
840
       }
841
     }
842
843
     if(metropolisAcceptance()){ // metropolis acceptance
844
       table[nn][mm] += dis;
                                  // update position with new one
845
       H += (s_new - s_old);
                                   // update total action
846
       return true;
847
     }else{
848
       return false;
849
     }
850
851
852
853
854
855
   bool System::globalDisplacement(const double& h){
856
     // random integer between 0 and N_part-1
857
     nn = rng()%N_part;
858
859
     dis=GenerateDist(h);
860
861
     /* no relative move between the time slices //
862
     // --> only the potential action changes
863
                                                      */
     s_old=0.0;
864
     s_new=0.0;
865
     for(size_t j(0); j<N_slices; j++){</pre>
866
       s_old+=(*ptr_Vext)(table[nn][j]);
867
       s_new+=(*ptr_Vext)(table[nn][j]+dis);
868
869
       if(N_part>1){
         for(size_t i(0); i<N_part; i++){</pre>
870
```

811

```
if(i!=nn){
871
              s_old+=(*ptr_Vint)(table[i][j],table[nn][j]);
872
              s_new+=(*ptr_Vint)(table[i][j],table[nn][j]+dis);
873
            }
874
         }
875
       }
876
     }
877
878
     if(metropolisAcceptance()){ // metropolis acceptance
879
       for(auto& pos : table[nn]){
880
         pos+=dis;
881
       3
882
       H += (s_new - s_old);
883
       return true;
884
     }else{
885
       return false;
886
     }
887
888
   1
889
890
891
892
   bool System::bisection(const double& h, const double& sRel){
893
     // random integer between 0 and N_slices-1
894
895
     mm = rng()%N_slices;
     // mm-1 with periodic boundary condition
896
     mm_min = (mm + N_slices - 1)%N_slices;
897
     // random integer between 0 and N_part-1
898
     nn = rng()%N_part;
899
900
     dis=GenerateDist(h);
901
     size_t l(N_slices*sRel);
902
903
     s_old=0.0;
904
     s_new=0.0;
905
906
     int ind_j(0);
     for(size_t j(0); j<1; j++){</pre>
907
       ind_j=(mm+j)%N_slices;
908
       s_old+=(*ptr_Vext)(table[nn][ind_j]);
909
       s_new+=(*ptr_Vext)(table[nn][ind_j]+dis);
910
       if(N_part>1){
911
         for(size_t i(0); i<N_part; i++){</pre>
912
            if(i!=nn){
913
              s_old+=(*ptr_Vint)(table[i][ind_j],table[nn][ind_j]);
914
              s_new+=(*ptr_Vint)(table[i][ind_j],table[nn][ind_j]+dis);
915
            }
916
         }
917
       }
918
     }
919
     s_old += kinetic(nn,mm,mm_min)
920
             + kinetic(nn,(mm+l-1)%N_slices,(mm+l)%N_slices);
921
     s_new += kinetic(nn,mm,mm_min,dis)
922
             + kinetic(nn,(mm+l-1)%N_slices,(mm+l)%N_slices,dis);
923
924
     if(metropolisAcceptance()){ // metropolis acceptance
925
       for(size_t i(0); i<1; i++){</pre>
926
          table[nn][(mm+i)%N_slices]+=dis;
927
       }
928
       H += (s_new - s_old);
929
       return true;
930
```

```
}else{
931
       return false;
932
     }
933
  }
934
935
936
937
938
  bool System::swap(){
939
     if (N_part>1){
940
       // random integer between 0 and N_part-1
941
       mm_min = rng()%N_part;
942
       // another, but different, random integer between 0 and N_part-1
943
       mm_plu = (mm_min+1+rng()%(N_part-1))%N_part;
944
       // random integer between 0 and N_slices-1 (bead where the swap starts)
945
       mm = rng()%N_slices;
946
       //length of the swap (nb of slices swapped)
947
       nn = rng()%(N_slices - 1) + 1;
948
949
       s_old=0.0;
950
       s_new=0.0;
951
       int ind_j(0), ind_j_pm(0);
952
953
       ind_j=mm;
954
       ind_j_pm=(mm+N_slices-1)%N_slices;
955
       s_old += kinetic(mm_min, ind_j, ind_j_pm)
956
               + kinetic(mm_plu,ind_j,ind_j_pm);
957
       s_new += kinetic(mm_min,ind_j,ind_j_pm,table[mm_plu][mm]-table[mm_min][
958
      mm])
               + kinetic(mm_plu,ind_j,ind_j_pm,table[mm_min][mm]-table[mm_plu][
959
      mm]);
960
       for(size_t j(0); j<nn; j++){</pre>
961
         ind_j=(mm+j)%N_slices;
962
         ind_j_pm=(ind_j+N_slices-1)%N_slices;
963
         if(mass[mm_min]!=mass[mm_plu]){
964
           for(size_t i(0); i<N_part; i++){</pre>
965
              if(i!=mm_min and i!=mm_plu){
966
                // change for particle(mm_min)
967
                s_old+=(*ptr_Vint)(table[i][ind_j],table[mm_min][ind_j]);
968
                s_new+=(*ptr_Vint)(table[i][ind_j],table[mm_plu][ind_j]);
969
                // change for particle(mm_plu)
970
                s_old+=(*ptr_Vint)(table[i][ind_j],table[mm_plu][ind_j]);
971
                s_new+=(*ptr_Vint)(table[i][ind_j],table[mm_min][ind_j]);
972
              }
973
           }
974
         }
975
                                                                  11
         /* in swapped part of paths :
976
         // K1_new = m1*(K2_old/m2), K2_new=m2/m1*K1_old
                                                                  */
977
         if(j){
978
           s_old += kinetic(mm_min, ind_j, ind_j_pm)
979
                   + kinetic(mm_plu,ind_j,ind_j_pm);
980
           s_new += mass[mm_min]/mass[mm_plu]*kinetic(mm_plu,ind_j,ind_j_pm)
981
                   + mass[mm_plu]/mass[mm_min]*kinetic(mm_min,ind_j,ind_j_pm);
982
         }
983
       }
984
       ind_j=(mm+nn-1)%N_slices;
985
       ind_j_pm=(mm+nn)%N_slices;
986
987
       s_old += kinetic(mm_min,ind_j,ind_j_pm)
               + kinetic(mm_plu,ind_j,ind_j_pm);
988
```

```
s_new += kinetic(mm_min,ind_j,ind_j_pm,table[mm_plu][ind_j]-table[mm_min
989
       ][ind_j])
                + kinetic(mm_plu,ind_j,ind_j_pm,table[mm_min][ind_j]-table[mm_plu
990
       ][ind_j]);
991
992
        if(metropolisAcceptance()){ // metropolis acceptance
993
          double tmp(0.0);
994
          for(size_t j(0); j<nn; j++){</pre>
995
            ind_j=(mm+j)%N_slices;
996
            tmp=table[mm_min][ind_j];
997
            table[mm_min][ind_j]=table[mm_plu][ind_j];
998
            table[mm_plu][ind_j]=tmp;
999
          }
1000
          H += (s_new - s_old);
1001
          return true;
1002
        }
1003
1004
     }
     return false;
1005
1006
   }
1007
1008
1009
1011
   bool System::inverse(){
     nn = rng()%N_part; // random integer between 0 and N_part-1
1012
     // no relative move between the time slices
1014
     // --> only the potential action changes
1015
     s_old=0.0;
     s_{new}=0.0;
1017
     for(size_t j(0); j<N_slices; j++){</pre>
1018
1019
        s_old+=(*ptr_Vext)( table[nn][j]);
        s_new+=(*ptr_Vext)(-table[nn][j]);
        if(N_part>1){
          for(size_t i(0); i<N_part; i++){</pre>
            if(i!=nn){
1023
               s_old+=(*ptr_Vint)(table[i][j], table[nn][j]);
               s_new+=(*ptr_Vint)(table[i][j],-table[nn][j]);
            }
          }
        }
1028
     }
1029
1030
      if (metropolisAcceptance()) { // metropolis acceptance
1031
        for(auto& pos : table[nn]){
          pos*=-1;
        }
1034
        H += (s_new - s_old);
        return true;
1036
     }else{
1037
        return false;
1038
     }
1039
1040 }
1043
1044
1045 bool System::symmetryCM(){
   nn = rng()%N_part; // random integer between 0 and N_part-1
1046
```

```
1047
     dis= 0;
     for(const auto& pos : table[nn]){
1048
        dis+=pos;
1049
     }
     dis*=-2.0/table[nn].size();
1051
     // no relative move between the time slices
1053
     // --> only the potential action changes
1054
     s_old=0.0;
     s_new=0.0;
     for(size_t j(0); j<N_slices; j++){</pre>
        s_old+=(*ptr_Vext)(table[nn][j]);
1058
        s_new+=(*ptr_Vext)(table[nn][j]+dis);
        if(N_part>1){
1060
          for(size_t i(0); i<N_part; i++){</pre>
1061
            if(i!=nn){
1062
               s_old+=(*ptr_Vint)(table[i][j],table[nn][j]);
1063
               s_new+=(*ptr_Vint)(table[i][j],table[nn][j]+dis);
1064
            }
1065
          }
1066
        }
1067
     }
1068
1069
     if(metropolisAcceptance()){ // metropolis acceptance
1070
1071
        for(auto& pos : table[nn]){
          pos+=dis;
1072
        }
1073
1074
        H += (s_new - s_old);
        return true;
1075
     }else{
        return false;
1078
     7
1079
   }
1080
1081
1082
1083
   void System::measure_energy(double V0, double x0){
1084
     double temp_energy_H(0), temp_energy_ETH(0);
1085
1086
     double R(VO); //For H-bond, VO is R
1087
     double D(83.402), a(2.2), r0(0.96), delta1(0.4*D);
1088
     double b(2.2), R1(2*r0+1/a), DELTA(delta1*exp(-b*(R-R1)));
1089
1090
     temp_energy_ETH += (*ptr_Vext)(table[0][0])
                        + (*ptr_Vext).e0_estimator(table[0][0]);
1093
     for(size_t i(1); i < table[0].size(); i++){</pre>
1094
        temp_energy_ETH += (*ptr_Vext)(table[0][i])
1095
                           + (*ptr_Vext).e0_estimator(table[0][i]);
1096
        temp_energy_H += mass[0]/2 * pow((table[0][i] - table[0][i-1])/d_tau, 2)
                         + (*ptr_Vext)(table[0][i]);
1098
     }
1099
     temp_energy_H += mass[0]/2 * pow((table[0][0] - table[0][N_slices-1])/
1100
       d_tau, 2)
                      + (*ptr_Vext)(table[0][0]);
     energies_psi.push_back(temp_energy_ETH/N_slices);
1103
      energies_h.push_back(temp_energy_H/N_slices);
1104
1105
   }
```

```
1108
1109
1110 void System::average_energy(){
     ofstream fichier_output;
1111
     fichier_output.open("e0.out");
1112
     fichier_output.precision(15);
1113
1114
     double temp_energy(0), temp_error(0);
1115
1116
     cout << "Finally, with d_tau = " << d_tau << endl;</pre>
1117
1118
     //PSI energies
1119
     for(size_t i(0); i < energies_psi.size(); i++){</pre>
1120
      temp_energy += energies_psi[i];
1121
       temp_error += pow(energies_psi[i], 2);
1123
     }
     temp_energy = temp_energy/energies_psi.size();
     temp_error = sqrt((temp_error/energies_psi.size() - pow(temp_energy, 2))
                      /energies_psi.size());
1126
     cout << "PSI: " << temp_energy << " +- " << temp_error << endl;</pre>
1128
     fichier_output << "PSI: " << temp_energy << " +- " << temp_error << endl;
1129
1130
     //H energies
1131
     temp_energy = 0;
1132
     temp_error = 0;
1133
1134
     for(size_t i(0); i < energies_h.size(); i++){</pre>
1135
      temp_energy += energies_h[i];
1136
       temp_error += pow(energies_h[i], 2);
1138
     }
     temp_energy = temp_energy/energies_h.size();
     temp_error = sqrt((temp_error/energies_h.size() - pow(temp_energy, 2))
1140
                      /energies_h.size());
1141
                 " << temp_energy << " +- " << temp_error << endl;
     cout << "H:
1143
     fichier_output << "H: " << temp_energy << " +- " << temp_error << endl;
1144
1145
     fichier_output.close();
1146
1147
1148
1149
1150
1151
1152 ostream& operator << (ostream& output, const System& s) {
     return s.write(output);
1154
1155
1156
1157
1160
1161
1162 // Generate a random (uniform) double between 'min' and 'max'
1163 double randomDouble(const double& min, const double& max,
1164
                      const bool& closed){
1165
   if(closed) return (min + (max-min) * (double)rng()/rng.max());
```

1106

```
1166 else return (min + (max-min) * ((double)rng()+0.5)/(rng.max()+1.0));
1167 }
1168
1169 // Generate a random double from a normal Cauchy distribution
1170 double CauchyDistribution(){
1171 return tan(M_PI*(randomDouble(-0.5,0.5,false)));
1172 }
1173
1174 // Generate a random double from one of the implemeneted distributions
1175 double GenerateDist(const double& h){
     if(rng()%2){
1176
      return h * randomDouble(-1.0,1.0); // proposed displacement
1177
     }else{
1178
      return h * CauchyDistribution(); // proposed displacement
1179
     }
1180
1181 }
```