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Abstract

In this project a path integral Monte Carlo computer program based on the Metropolis-
Hastings algorithm is written to numerically simulate quantum toy models, such as the
simple quantum harmonic oscillator, and the hydrogen bond between water molecules.
Toy models are compared with their expected theoretical results and it is attempted to
observe nuclear quantum effects in the hydrogen bond. In the first part of the project,
which is theoretical, Feynman’s path integral formulation of quantum mechanics is intro-
duced and used to reformulate the analytical problem of computing the zero-point energy
of a system into a probabilistic one, hence justifying the use of Monte Carlo methods.
A formal mathematical application of a Wick rotation is presented. The Metropolis-
Hastings algorithm is explained and a modelization of the hydrogen bond is presented.
In the second part of the project, which is computational, various physical quantities are
measured in both toy models and the hydrogen bond model: for toy models the zero-point
energy, the position probability density function in function of temperature and the size
of particles are observed while for the hydrogen bond the bond length, the bond energy
and tunnelling are observed. It is found that the execution of the Metropolis-Hastings
algorithm is influenced by the simulated system. Simulated toy models behave as theo-
retically predicted: correct zero-point energies are measured, position probability density
functions correctly vary with temperature, particles delocalize correctly in time and tun-
nelling is observed. Simulations regarding the hydrogen bond don’t show any nuclear
quantum effects and no secondary geometric isotope effect is observed.
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1 Introductory chapter

1.1 Motivation

Most of atomistic numerical simulations of chemical, biological and material systems treat nuclei
as classical particles and only electrons as quantum mechanical entities. This approximation,
dictated by computational limitations, neglects nuclear quantum effects (NQE) and hence it
makes impossible to study fundamental properties dependent of them [1]. Feynman’s path inte-
gral formalism can be used to to reduce the computational cost generated when accounting for
these NQE. Its direct numerical evaluation is computationally too expensive and perturbative
expansions fail for some systems, therefore a Monte Carlo approach is used [2].

1.2 Aims and objectives

The first aim of this project is to understand the path integral formulation of quantum me-
chanics and apply it to write a quantum Monte Carlo computer program. The objective is to
get a full picture of the path integral formalism, maintain theoretical clarity in derivations, jus-
tify every mathematical step, give great importance to mathematical details and their physical
implications, and to use all the grasped knowledge to write a C++ programme. Specifically, an
objective is to formulate and apply a Wick rotation formally.

The second aim of this project is to apply this computer program to simulate quantum
toy models, to compare them with theoretical predictions, and to simulate the hydrogen bond
interaction to numerically investigate NQE and the secondary geometric isotope effect. For
toy models, the objective is to simulate a particle in an infinite well, double well and in an
harmonic potential, and measure its zero-point energy (ZPE), size and its position probability
density function with varying temperature. For the hydrogen bond the objective is to measure
ZPEs and bond lengths under different conditions.

2 Discussions of the methods employed

Along this report we use the conventions stated in app. (A).

2.1 Feynman’s path integral formalism
2.1.1 Justification

Consider a particle of mass m [kg|] trapped in a potential V(x) [J] independent of time in a
one-dimensional Universe. Given an Hamiltonian operator H, the evolution in time ¢ [s] of the
quantum state [¢(t)) is the solution of the Schrédinger equation

d .
thyy [W(t)) = H[Y(t)) (1)

where i = 1.055 - 107! Js [3] is the reduced Planck constant. If at ¢ = Os the state is [¢(0))
then the solution of eq. (1) is [1(t)) = U(t,0) [¢(0)), where

Ulty,t;) := exp (—%(tf - mH) (2)

is the time evolution operator that evolves quantum states from time ¢; [s] to ¢ty [s] [4, p.10]. An
interesting mathematical observation is

[W(ts)) = Ulty,ta) [9(t:) = Ulty, i) Lo,

() = / O(tyot) o) (@lot) e, (3)
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hence multiplying on the left by the position eigenstate (x| = (z¢|, = [m], we get [2]

(g, ty) :/RK(Jffatf;xivti)w(%ti)d% (4)

K (g, tyiwit) = K(f,) i= (g | Uty t) | 2:) (5)
is called the propagator [5]. Notationally i = (z;,t;) and f = (xy,tf) in K(f,1).

where

2.1.2 Derivation of the path integral

Feynman’s path integral arises as a consequence of the explicit calculation of K(f, i), given in
app. (B). It is found that [5]

K(f.i) = lim Rdxl---/Rde_lAévexp< Z [m (“‘x’“ 1>2—V(xk_1)]>, (6)

where ¢ = (t; — t;)/N, ©o = z;, vy = xy and A, := y/m/(2mihe). The physical interpretation
of K(f,1) is deduced by recognising the discrete approximation of the action S[z(t)][Js] of
a path z(t) : [t;;ty] — R. If we interpret ¢ = (t; — t;)/N as a time step and we identify
x = x(t; + ke) = x(ty,) at time slice t; then [4, p.12]

EZ [ <x’f _— 1)2 _ V(mkl)] ~ /: Bm:&2 - V(m)] dt = Sz(t)). (1)

For each infinitesimal volume element dV = dx; -+ -day_1 of RV~ the AY exp(iS[z(t)]/h)dV

contribution is added to the overall infinite sum. The contribution only depends on (x1,...,Zx_1)
and the (N — 1)-integral varies each of these coordinates: the physical interpretation is that
each contribution comes from one specific path, represented by its discretization (x1,...,xx_1),

of all the infinite possible ones from xy to xy [4, p.12]. This concept of summation over all
possible paths defines the path integral [5]

[ o (state) Date) = (7.0 (5)

2.2 Wick rotation and Euclidean action
2.2.1 Justification

In general K(f,i) € C: in sight of numerical treatment we want to only consider real-valued
quantities [2]. K(f,i) can become real-valued under three conditions: if by analytic continu-
ation paths z(t) : R — R are allowed to be such that z(¢) : C — C, if we assume that the
physical model evolves in time along the negative imaginary axis t € iR_, and if a 7/2-rotation
on the complex plane of times, called a Wick rotation, is performed to rotate imaginary-valued
times back into real-valued times [4, p.56].

2.2.2 Derivation of the Euclidean action

It is standard practise in the literature (see [2, 4, 6, 7]) to perform the Wick rotation in eq. (6)
as a mere substitution ¢ — ti =: 7 [s], where 7 € R is called the imaginary time and t € R_ [2].
In this work we apply the Wick rotation more formally with mathematical arguments of our
own invention: this allows a deeper understanding of its implications.
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_ Consider a general continuous function f : C — C. Define f: C — C to be such that
f(zi) = f(2) for all z € C. In app. (C) we prove useful properties of f. Let a,b € R such that
a < b and consider the integral

/[M.’M f(z)dz = / O = i / fCxi, (9)

where the line [—ai, —bi] has been parametrized by z(A) = —Ai for A € [a;b]. Then using the
same parametrization

/[m.’bi] f(z)dz = /[ai,m-] fzi)dz = —i / b Fa. (10)

Now Wick rotate the line [—ai, —bi] — [a, b] and compute the integral of f along it:

f(2)dz = b~)\d/\, 11
e /af() (11)

where this time we used the parametrization z(\) = A. This proves that

]_ ~
dz = - dz.
/[_m’_bi]f(Z) o= /[ REE (12)

The above result is now applied to the path integral: recall that t;,,¢; € ‘{R_. Using
properties in eq. (69) we see that the action becomes

Sli(t)] = /[ y [% (%(t)>2 - v<x<t>>] at= -1 /[ » [% (j—()) ¥ v<a:~<f>>] dr.

(13)
i) =

where we also changed the name of the integration variable to 7. By definition z(7) = z(t
x(t), hence Z(7) € R. This motivates us to define the Euclidean action Sg[Z(7)] [Js] as [2]

Spl#(r)] == /[ . [g <g(7)>2 + V(f:m)] dr = /f H (@(7), g(f)) dr, (1)

where 7, = it;, 74 = ity and clearly Sg[z(7)] € R. We recognise the presence of the time
independent classical Hamiltonian H(x, ) [J]. The relationship between the two actions is

Sla(t)] = iSpla(r)]; (15)
therefore the path integral becomes a real quantity [2]
/ exp (%S[az(t)]) D (t) = / exp (—@) Di(7)
0 o [m (F— B )
= ]\}gr{l)o Rd:i‘l ce /RdjN_lAg_ €xXp (—? ; [5 (%) + V(fk_l)]> s

where 07 = ie[s] and we defined the constant Ay, := A.—_;5; = /m/(27hdT). Notice that
T = &(1,) = z(ty) = xy, therefore the tilde symbol can be dropped Z = xy.

(16)



2.3 Measurement of the zero-point energy

2.3.1 Justification

Denote {|n)}nen the energy eigenstates of the QM system, {E,},en [J] their eigenenergies
and suppose Ej is not degenerate. We want to compute the ZPE Ey = (0|H|0). Consider
the system under the statistical mechanics (SM) formalism at thermal equilibrium where the
possible microstates are {|n) },en and they follow the Boltzmann distribution [2]. Microstates
probabilities are denoted p,, € [0;1]. We want to find a link between the partition function of
the system

- h
) = Ze_ﬁEn/h, with = T (17)

and the real-valued path integral in eq. (16). /3 [s] is the thermodynamic temperature, Tk [K] is
the temperature of the system and kp = 1.381-1072% J/K [3] the Boltzmann constant. Clearly
pn = exp(~BE. /)] 2(5).

A connection between Z(f) and eq. (16) exists under the condition that periodic boundary
conditions (PBCs) are forced to all paths, meaning that imaginary time is cyclic.

2.3.2 Derivation of the zero-point energy

The following derivation has been modified, clarified and expanded from reference [4, p.56-57].
Ey is clearly the SM average energy of the system in the limit of close to the absolute zero
temperatures [ — oo:

Zzo o F e BEn/h e—ﬁEo/h(EO + Be BEL=Eo)/h 4 .. )

Jun Elsw = i So = mm = M0 o mm (1 ¢ o s ma oy o (18)

Indeed, as Ej is not degenerated, Ey — Ey > 0 for k£ > 0. In terms of Z([):

o D B PP 9
Ey = ﬁh_g)lo S R 511—{20 —h% InZ(B). (19)

Z(B) can be written in the bra-ket notation:
23) =Y (n|toe 100 |0} = 3~ [ 4’ (a] )
n=0 n=0 7R
:/dx/z<x e‘ﬂﬁ/h‘n> <n|x/>:/dx'<m’
R o R

This is equivalent to eq. (5) if one sets z; = x5 = 2/ and t; = 0, t; = —fi: the position
conditions are the PBCs while the time ones identify the thermodynamic temperature with the
imaginary time 7% = 3, where we denote T" = t; the cyclic imaginary-valued time. % in eq.
(17) forces B to have time units. Knowing = i7"

Z(8) = /dx< @TH/h‘ > /da:’< o, 0)\ >
:/Rdx//exp (%S[ ) /dx /exp( SEQ;L )]) Dz(r).

Paths in the path integral are such that z(0) = z(7T") = 2’ < Z(0) = Z(f8) = «’. The external
integral over z’ takes care that all possible PBCs are considered.

1| =B /n ’ n>

(20)

e_ﬁﬁ/h]n ‘ x'> .

(21)



Eq. (21) gives the link between Z(3) and the path integral. In app. (D) eq. (21) is injected
into eq. (19) using its limit definition in eq. (16) that implies f§ = N7 and zy = zy: the
complete computation is performed there, here we highlight two conceptually important steps
of that calculation. The general result of app. (D), which can be guessed from eq. (19), is that
Ey can be seen as

Eo = lm (P(%)). (22)
B—o0
N—00

where F' : RY — R is seen as a function of N random variables X = (Zo,...,Zy_1) that are

distributed according to the multi-variable probability density function (PDF)
e~ SeXl/h
fR dii‘() fR d[il . f]R di_lefsE[i]/h7

whose multi-variable integral is 1 and w(X) > 0. Sg[X] is the discretized Euclidean action found
in eq. (16). In app. (D) we compute two different forms of F'.

The first expression of F' is obtained by introducing at one line of the derivation in app.
(D) an arithmetic average over all N time slices ¢, of the Hamiltonian, associated to a path
z(/), at time ¢, with 0 < k < N —1. This can be done because time is cyclic and therefore any
time 7 € [0; 8] can be chosen as the end time of one cycle of time [6]. This is also done because
numerically the average reduces statistical errors [6]. By doing so it is obtained [4, p.57]

Fr(X) = %i [% (fk —(ka—l.y + V(i)

k=1

w(X) =

(23)

(24)

Using FJ is not suitable for numerical implementations because of 1/07 terms [4, p.57].

The second expression of F' removes 1/07 terms by applying the Virial theorem to eq. (24).
In app. (E) we show (0|7']0) = (0|zV’(x)/2|0), which justifies the substitution of the kinetic
terms in eq. (24) with (first derivative) potential-like terms [4, p.57]:

1 N

Fe®) = 3 |V @+ 5V @) (25)

k=1

2.4 Numerical implementation
2.4.1 Justification of the Metropolis-Hastings algorithm

Given the PDF in eq. (23), a numerical evaluation of eq. (22) requires N integrals, each
discretized into N integration points, hence the time complexity of the computation grows as
O(NN). This asymptotic behaviour, called ‘the curse of dimensions’ [4, p.58], makes a direct
numerical evaluation of eq. (22) practically impossible. In order to avoid inordinately long
computational times, Ey is estimated as [4, p.5§]

1 M

Ey = élinolo (F(X)) ~ M;F(il) —: By, (26)

where x! = (7),...,7% ) is one of the M realisations of X (1 <1 < M) and M, N, f3 are
assumed large. The error on Ey; is [4, p.58]

AFEy\ =

R T T R %ZF(&IP—(%;F@)) ,
(27)



where spx) is the standard deviation of F(x). Numerical results are presented as Ey =+
AFEy. The realisations X! are numerically generated through the Metropolis-Hastings algorithm
(MHA) which randomly samples the distribution in eq. (23) with an importance sampling cri-
teria, hence this approach to compute Fj is a Monte Carlo method [7]. The MHA produces a
Markov chain X° — %! — ... — x! (a random walk in the state space of discretized paths X)
where each path X/ (except X") only depends on the previous one X/~! and it is selected more
likely in the highest probable regions of RY given by eq. (23) [7]. Each generation of a path
is called a sweep, hence in the previous chain I sweeps have been performed: I is called the
Monte Carlo time [2].

2.4.2 Steps of the Metropolis-Hastings algorithm

Starting from the initial condition X°, the MHA runs as follows [2]:

1. Given the current j-th path, propose a possible (j + 1)-th path X’ by applying one of
the available moves stated in sec. (2.4.3). The move is randomly chosen according to a
specified moves distribution Py, (see sec. (2.4.5));

2. Compute r = w(X')/w(X?!) = exp(—ASg/h) (the denominator of eq. (23) is not com-
puted), with ASg := Sg[X'] — Sg[X’] being the change in Euclidean action between X’
and X7, and accept the move with probability p = min(1,7): if accepted, set X/ = X/,
otherwise set X/ = x7;

3. fj+1<1Isetj— j+ 1 and go back to step 1, otherwise stop here.

The MHA always (p = 1) accepts moves such that ASg < 0 and sometimes (p = r < 1) it
accepts moves such that ASg > 0 [2].

In app. (F) we prove that the more [ is large, the more the chain approaches the stationary
distribution equilibrium given by eq. (23) [4, p.59]. This approaching process is called thermal-
ization [7]: we numerically confirm thermalization when ()’ := [(z})? + - - - + (z%y_,)?]/N [m?]
stabilises along sweeps after a certain measured R-th sweep [2], called the thermalisation time.
No measurement F'(X') is performed before the R-th sweep, thus the choice of X° is arbitrary
[4, p.62]. A cold start is defined as X = 1&£ = (,...,€) for £ € R, while an hot start is defined
as X° having random components [4, p.62].

2.4.3 Possible propositions of moves and optimisations

Given the current path %’ the proposed path X' = (Zj,...,%y_;) is generated as follows [2, 8]

1. Local move: initially set X' = %/, chose a random site xi, a random displacement u [m]
either uniformly in the interval [—h;;h;|, h; [m], or according to a Cauchy distribution
of parameters (29,7) = (0, h;) (see app. (G)) and modify z}, = x, + u. Update hi —
hj+1 = h; - r4/rp: this is done so that the (empirical) acceptance rate per sweep of this
move r4 € [0; 1] converges towards a desired fixed ideal rate r; € [0;1];

2. Global displacement: exactly like a local move, but the move z} = :10?C + wu is performed
at all sites 0 <k < N —1 and it is set h; = hy always;

3. Bisection: select a random site xi, then apply a global displacement but only for the
subset of positions {zJ : m € [k; (k + floor((N — 1)sg) mod N)]} for sp € [0; 1];

4. Mirror: perform the inversion X' = —%/;



5. Center of mass displacement: calculate the average position/‘center of mass’ (z) =
j

(z) + -+ 2)_,)/N [m] and perform a global displacement with u = (x)’;

6. Swap: select 2 random particles, select a random initial and final sites x7, 7 such that
|z — 2 | > 1 and swap all the sites 2/ < z] < 27 among the two particles. This move
is activated only when there are more than 2 particles.

When a new path X’ is proposed, some of its components may be identical to those in X/,
thus when calculating ASEg terms dependent of those components would cancel each other. In
order to optimise the programme, the computation of ASg is specifically implemented for each
move so that only the positions x} # xi are taken into account [2]. For example, for a local
move, only the moved site (potential energy variation) and its two nearest neighbours (kinetic
energy variation) are considered.

The MHA is implemented as a C++ programme: source code is available in app. (I).

2.4.4 Units in the programme

Standard SI units are used. Products of quantities that span different order of magnitudes are
common, hence it is appropriate to introduce custom prefixes so that a physical quantity ¢ can
be expressed as ¢ = gy - 109 [q], where ¢y (unitless) is close to unity and @ in the 109 prefix
is the typical order of magnitude of ¢. In app. (H) we justify the following values of @ for all
the relevant quantities in this work:

h=hy-1073Js, m=mpy-10"kg, z=2z5-107"m, §7 =7y 10715,

kg =kpn-1002J/K, V=Vy-100J,  w=wy-10"Hz, f=py-10""s.
w [Hz] is the angular frequency of an oscillator. This way maximal machine precision is guaran-
teed as all sums have the same prefix and ASg/A in r is close to unity. In the C++ programme

only gy quantities are considered and only at the end of simulations ¢ quantities are recovered
by multiplying ¢x with the correct final prefix, determined analytically.

2.4.5 Parameters required by the programme

i [A]

Figure 1: A set of N = 10 paths generated by the MHA, starting from a cold start and running
I =100, of a single particle my = 1. Between each represented path there are J = 20 sweeps.
The potential is harmonic with wy = 10.

To be ran, the programme needs the following inputs: a choice of potential Vy(zy) =
V(zn;{u:}) among those implemented with the value of the parameters {y;} defining it (for
example wy), the mass my of a single particle or a list of masses {(my);} where each mass
corresponds to an independent particle, the number of sites N and the simulation time [y

10



so that d7y = fn/N, the Monte Carlo time I, the thermalization time R, the stride jump
J, the moves distribution Py, = (Py,..., Ps) where P; € [0;1] and indices refer to the list in
sec. (2.4.3), the local move initial hy and ideal acceptance ratio r;, the bisection move relative
size sp € [0;1]. J is the number of sweeps that have to be discarded between each F(X!)
measurement, hence I — R = M J: M is determined by I, R, J. The MHA applies independently
to all particles (my); € {(my);}, hence they don’t interact and ASEg is individually computed
for each of them. Sec. (3.4) uses a modified version of the programme so that ASg is the sum
of all the individual Euclidean actions of the simulated particles. Fig. (1) shows the typical
appearance of paths generated by the MHA.

2.5 The hydrogen bond
2.5.1 Brief description

An hydrogen bond (H-bond), denoted as the dotted line in X — H---Y, is an electrostatic
interaction that can occur between molecules (intermolecular) or inside a molecule (intramolec-
ular). The bond arises as a consequence of a polar covalent bond (the solid line in X —H---Y)
between an hydrogen atom H and an highly electronegative atom X called the donor: because
of that the shared valence electrons between X and H are more attracted to X and this induces
a positive charge on the H atom (it becomes a proton), which is attracted to another highly
electronegative atom Y called the acceptor. [9]

2.5.2 Theoretical model

We follow the same treatment as in [10]. We still denote by H the proton in the H-bond.

Consider a two states quantum system described by the reduced Hilbert space spanned
by |X-H,Y) and |X, H-Y), differing only by the bond between H and either X or Y. Denote
d(A,B) [m] the distance between two generic particles A and B. Define R := d(X,Y), r :=
d(X,H) and r* := d(H,Y). The triangle of vertices given by the positions of the particles X,
H, Y, generates the angles ¢ [rad], at the X vertex, and 0 [rad], at the Y vertex. By the law of
cosines

r* = \/R% 412 — 2rRcos(¢), (28)

therefore if ¢ = 0 then # = 0 and r + r* = R as in fig. (2). Given a potential V, specific to
particle z € {X, Y}, the effective Hamiltonian is

- VX AX'Y
H = 29
(AXY Vy), (20)

where Vx = Vx(r), Vi = V3 (r*) and
AXY = AXY(R7 Cb, 0) = A1 COS((b) COS(Q)B_b(R_Rl)v (30)

where Ay [J],b[1/m], Ry [m] are constants. Axy # 0J is an interacting term that couples the
two original states so that they aren’t eigenstates. We use the Morse potential

Va(r) = D, (e~tr-me)  gema-tr-ro.) (31)

where D, [J],a,[1/m],ro., > Om are constants specific to the z-particle. We only consider
systems where the proton affinity of X and Y are the same: hence the z-subscript is dropped
and it is Ry = 2ro 4+ 1/a. We assume ¢ = 0, hence § = 0 and therefore Ayy is purely
exponential and it only depends on R. Fig. (2) summarise the whole model and shows the
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graph of V.(r): the bonding energy is D. To find the eigenvalues e [J] of H compute the
characteristic polynomial

X(e’fi) = det(ﬁ — €ii) = (VX — e’:“i)(Vy — e’ii) — AQ = 83: — Ei(Vy + Vy) + (vay — AQ) (32)

and find its roots. Using the quadratic formula for y(e+) = 0:

1
ey = 5 (VX + W £ \/(VX + Vy)2 — 4<vay — A2)>

=2 (W + %+ VVx — 5P 1 A7)

€+ > €_, hence ¢, describes an electronic exited state
potential energy while €_ describes the electronic ground
state potential energy [10]. A Born-Oppenheimer approx- V' ro r R—r, R
imation is applied with the potential of the ground state !

e_(r): we only consider the QM motion of H confined in

e_(r) and we assume X and Y are classically localised and !

still in space and not influenced by H [10]. The approx-
imation is justified because the masses of X and Y are
bigger than the mass of H, hence the motion of H hap-
pens on a different time scale as the one of X and Y. Fig.
(3) shows the plot of the normalized and shifted e_ po-
tential for three different R. The strength of the H-bond Figure 2: Visualisation and defined
can be characterised by the value of R: if R > 2.6 A the quantities of the H-bond model,
H-bond is said to be weak (there is a potential barrier and the shape of Morse’s potential.
around r = 0A), if 2.3A < R < 2.6 A it is moderate (the It is assumed ¢ = 6 = 0.

potential barrier e_(R/2) ~ —D) and if R < 2.3A it is

strong (there is no potential barrier) [10].

2.5.3 Numerical implementation

Reference [10] gives the values: D =
120 keal/mol hence D = 83.402 - 1072Y J,
a=22A"1 ro=096A, Ay =04D = 025!
2.082eV hence A; = 33.361 - 10720 ],
b=22A"1and §# = ¢ = 0. The val-
ues of 7o and a give Ry = 2.375A.
Symmetry moves (sec. (2.4.3)) as-
sume the potential is symmetric around
z = 0 A, therefore a shift of —R/2 is ap- -1.25+
plied to all positions to get better numer-

-0.5¢

-0.75

e_(r+R/2)/D

. . -1. : : : : : : : : :
ical results because then the axis of sym- 5_1 -0.8-06-04-02 0 02 04 06 08 1

metry of e_(r) is shifted from x = R/2 r [A]

tox =0A.
Analytically e_(r) — 0J asr — Fo0 Figure 3: Plot of the electronic energy surface €_

but numerically _(r) is a difference of with varying R showing the three bond strength

quantities that tend to infinity when r — Tegimes.

400, hence numerically this difference involves big numbers. It is found empirically that for
8A < |r| < 10 A the programme returns ¢_(r) = +inf while for 10 A < |r| it returns e_(r) =
NaN, hence to avoid this an if statement is implemented to force e_(r) = 0 for all |r| > 8 A.
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3 Results

3.1 Verification of the Metropolis-Hastings algorithm

Denote ASJ{; the j-th variation of the j-th sweep, with j > 0: if the move is accepted set
AS}, = ASg, otherwise AS}, = 0Js. Then

Sp[X’] = Sp[X°] + i ASE. (34)

We verify at each sweep j that the value of eq. (34) is the same as the one computed with
the discretized formulation of Sg[%’] in eq. (16). If all moves are correctly implemented eq.
(34) is verified for each sweep, hence if at some sweep eq. (34) is not verified then at least one
move is not correctly implemented. Setting P; = d;x, the single k-th move can be verified. This
was done for all moves and for any sweep eq. (34) was found to be satisfied up to a maximal
107810729 Js error.

Local moves should be attempted on average once every sweep at every position [2]. This
was verified in all the simulations of this work: average attempts per site per sweep were always
1 with a maximal 1073 error. It has also be verified in all simulations that r4 converges and
then oscillates around 7; with a maximal 1072 error, hence the adaptive interval size h; is
correctly implemented.

3.2 Particle size
3.2.1 Theoretical predictions

Consider a particle in a null potential fully localised at position z = 0A at time t = Os,
Y(z,0) = 6(x). (x,t) for t > 0s is the solution to Schrodinger equation (1) in position
representation

o h? 0%y o 0%

where A = hi/(2m). The solution of this PDE is [11]

V(1) = \/ﬁ exp (—f—jt) | (36)

This is a normalized Gaussian curve of variance o(t)> = 2\t. Because ti = 7, the standard
deviation becomes o(7) = /7h/m. We interpret o(3) as the size s[m] of the particle [12]. As
imaginary time 7 increments the particle delocalizes linearly because 1 (z, t) propagates through
space [13]. Numerically s is calculated as the average of the estimated o over all I sweeps:

1 Jd | Nl | V-l 2
—— = N2 | J
=S\ F R (75 o

Reference [14] shows s < d := /2h/(mTkkp)[m]: if this inequality is not verified then the
MHA isn’t correctly implemented.
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Figure 4: A set of paths generated by the MHA, starting from a cold start. Paths are approx-
imately straight lines with small deviations.

2
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Figure 5: Size of particle against its mass m. Linear regressions (dashed lines) are performed
on their respective measured points: their slope is approximately identical.

3.2.2 Numerical results and discussion

All simulations use N = 100, I = 10°, R = 1000, J = 500, hg = 1, r; = 0.5, sp = 0.3, P, = §; 1,
Vn(zn) = 0. my, 8 vary but d7y = 0.1. X° is a cold start.

Fig. (4) shows some paths X’ generated by the MHA. After the cold start X where o = 0,
o # 0 and it oscillates around s. Trajectories are approximately straight lines with small
deviations from (z)? of the order of 1A because sawtooth-like trajectories implies a kinetic
price in ASE and the MHA accepts more willingly moves with low kinetic price.

Fig. (5) shows in a log-log plot the particle size s as a function of m for multiples 5. For
all considered  we observe a linear relationship between log(s) = x and log(m) = y, hence s
scales as s ~ m® where o € R. « is determined by linear regression with MATLAB’s function
polyfit() using all (x,y) points of same (5. For all three (3, estimated a are close to —1/2,
verifying in the my € [107%;10?] interval the expected s ~ 1/y/m relationship.

Intrigued by the spacing between the three interpolation lines in fig. (5), we investigate
the behaviour of s with varying 8. Fig. (6) shows s as a function of 5 in a log-log plot.
Using the same argument as before, there is a relationship s ~ $%. The linear regression gives
a = 0.511 &~ 1/2, verifying in the Sy € [1;20] interval the expected s ~ /3 relationship.
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e Measured particle size s .-
El----- Linear regression y = 0.511x — 0.063 e

‘—"' . . . . . . . P
10° 10"
B [1071 ]

Figure 6: Size of a particle with mass my = 1 against time /3. A linear regression (dashed line)
is performed on the measured points.

Particle | my | Tk [K] | Bn | s[A] | d[A]
H 1673 1 7609 | 0.195 | 9
) 26567 1 7609 | 0.049 | 2.5
O 26567 | 100 76 |0.044 | 0.3

Table 1: Numerical results to confirm the s < d inequality.

Thl. (1) tests and confirms the inequality s < d with two particles: the hydrogen atom H
and the oxygen atom O respectively of masses my = 1673 and my = 26567 [3].

3.3 Application of the Metropolis-Hastings algorithm on toy models

Consider three systems: a particle in either an infinite well, an harmonic or a double well
potential. We observe the numerical approximation of the position PDF |¢(x)> = | (z|v) |?,
denoted |¢(z)|?, along the variation of specific parameters, such as 3, m or parameters that
define the potential. When |¢(z)|? is compared with [¢)(z)|*> and Fy is compared with Ej,
analytical expressions are used when possible, otherwise numerical approximations are com-
puted in another way than the MHA. |¢(z)|? is obtained by plotting a normalized histogram
of positions generated considering all xi of all thermalized paths X7, where 0 < k < N — 1 and
R<j<I[2.

3.3.1 Effect of temperature on the position PDF

We saw in eq. (18) (E)qy — Eo in the limit T < 1: close to the absolute zero the system has
a full QM ground state behaviour, hence p,, — d,0 and (z) = ¥y(z), hence the PDF of the
particle position is |1 (z)[?.

Above the absolute zero p,~g # 0. The higher the temperature, the wider the microstates
distribution spreads across the energy spectrum {E, },en: the available microstates population
grows in number (more and more n > 0 states become reasonably probable p,~o # 0) along
with its upper energy bound. In the limit Tk > 1 the system can be observed under the
classical SM eye where each microstate is differentiated by the classical position of the particle,
considered without kinetic energy [15]. At position x the particle has energy V(z), hence the
classical SM partition function is

Zo(B) ::/Re_ﬁv(x)/hdx. (38)

Integration is necessary as x € R is continuous hence there are infinite microstates. The analogy
with eq. (17) is clear: E, is substituted with V(z) and the sum over n is substituted with an

15



integral over x. From Z¢(/3) we infer the PDF of the particle position

S Z

(39)

We can verify whenever the MHA is correctly implemented if we find in the limit Tk < 1
that |¢(z)|? ~ [¢o(2)|* and E\ ~ Ejp, while in the limit Tx > 1 that |¢(z)|*> ~ pc(x). The
temperature limits are numerically implemented by fixing 7y and varying Sy or N.

3.3.2 Analytical computations, numerical modelling and results
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Figure 7: Variation of |4(z)]* along
temperature, compared with pc(z) and
|10o(2)|?, in the infinite well system.

We consider the infinite well potential

V. if —x.| < L/2,
T R DA 1)
0 if |z—uz|>L/2,

with z, = OA, V. = —oco. L > 0A is the length of
the well. Numerically this is implemented as

V;,N if |xN_xr,N| <LN/2,
0 if ‘xN—.CIZ'an ELN/Q;

Vn(zy) = { (41)

where 2,y = 0, Ly - 107!1% = L and V, y is taken
negatively very large. The ground state wave func-

tion is [13]
o(z) = \/%cos <%> : (42)

hence the QM position PDF is

9 2
|iho(2))2da = L—Ncos (%) dzy. (43)

The introduction of dxy instead of dx is necessary
because in our scaled plots we consider x and not
x. The SM partition function is

Ze(B) = /_ -1 (44)

L2

therefore the SM position PDF is

(2)d e PV @/hdy {dx/L it |z] < L/2,
po(r)de = ———— =

L Odx if |z| > L/2.
(45)
Notice how pco(z) is independent of temperature.
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Figure 8: Variation of |¢(x)[*> along

temperature, compared with pc(z) and

|o(x)|?, in the harmonic system.

We consider the harmonic potential

1
= §mw2x2,

V(z) (46)
with m the mass of the particle and w the angu-
lar frequency of the oscillator that characterises the
width of the harmonic well. Numerically this is im-

plemented as

1
—mywATY. (47)

VN(IN) = B

The ground state wave function is [13]

(2 e (-22),

hence the QM position PDF is

Yo(z) =

2 mNnwN MNWNT N
la)Pde = [T ey (NN ) g
(49)
The ZPE is [13]
Ey= Epo = hw <1 + n) _ I e
2 0 2
(50)

The form of FE,, is simple enough to let us calculate
analytically the partition function

o i —Bw/2
7(8) — —BEn/h _ ,—Bw/2 —Bum _ _©
(51)
hence the microstates probabilities are
B= D e ey, ()
Dn = = PN (1 —ePY). H2
Z(B)

We see for f — oo we have p,, — 6,0, as predicted.
The SM partition function is evaluated using the
Gauss integral [16]

2.2
260) = [ exp (-5 ) e =

hence the SM position PDF is

mw? exp (_mw2x2ﬂ> da

21h

de —
pe(x)dz orh o

2 2 .2
mywy By MNWNTN BN
\| "207hy eXp( 207y ) o
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We consider the double well potential

012
()]
Ty
with V,.,x, > 0 constants: V, is the height of the

potential barrier between the two wells and x, is the
distance of their minima from # = 0 A. Numerically

this is implemented as
z \2
Tr N

where V, =V, y-107% and z, = 2,5 - 1071% A nu-
merical approximation of [1y(z)|? and Ey are calcu-
lated using the MATLAB package Chebfun [17]. The
SM partition function is numerically approximated
using the integral () function in MATLAB. All those
numerical approximations are denoted as they were
analytical.

Viz) =V, (55)

2

VN(ZL‘N) = V;JV (56)
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Variation of |¢(x)[* along Figure 10: Variation of |¢(z)|? along V; in the dou-

temperature, compared with pc(x) and ble well potential. Tunnelling reduces and the two
|100(2)|?, in the double well system.
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mpy Ey [10720(]] my B [10720{]]

107% | 5.259 £0.169 || 10* | 5.351 £0.171
107° | 5.273 £0.163 || 10% | 5.470 £ 0.252
1074 | 5.273 £0.147 || 103 | 5.280 £ 0.149
1073 | 5.234 £0.169 || 10* | 5.221 +0.170
1072 | 5.434 £0.176 || 10° | 5.288 +0.185
1071 [ 5.301 £0.179 || 10° | 5.274 £0.174

WN Ey [10_20J] E [10_20J]
5.371 £ 0.180 5.273
10.346 £ 0.251 10.546
16.055 £ 0.339 15.819
20.861 £+ 0.326 21.091
26.257 £+ 0.412 26.364

U W N =

Table 2: Measured Ey\; of a my = 1 particle

. . . . Table 3: M Eyp of icle i =
in an harmonic potential for different wy. able 3: Measured Ey of a particle in a wy

1 harmonic potential for different masses my.

In all simulations my = 1, I = 10°, R = 1000, J = 500, Py = (1,1,1,1,1,1), hy = 5,
r; = 0.5, sp = 0.3. 67 = 0.1 is fixed and By, N varied. X" is an hot start with random positions
between [—10; 10] A. When § is varied, for the infinite well it was taken Ly = 20, V,. y = —10%,
for the harmonic potential it was taken wy = 10 and for the double well it was taken V. y =6
and z, y = 6. When m is varied in the harmonic potential, it was taken wy =1, Sy = 10 and
it was used [’ = Fy. When V, is varied in the double well system, it was taken x, y = 6. When
x, is varied, it was taken V, y = 5. On both last cases By = 5.

3.3.3 Discussion of results

General observations for all systems Fig. (7), (8) and (9) show |¢(z)|* with varying
temperature Sy, compared with pc(z) and [1)y(z)|?>. When Sy is the highest (low temperatures)
|6(x)|? follows |1 (x)|?, when By is the lowest (high temperatures) |¢(z)|? follows po(x). This
proves |¢(z)|? is correctly normalized, as po(x), [o(x)[* are. When temperature is not in a
limiting case (By is between these two bounds), |¢(z)|? is an intermediate PDF between the
previous two. In the 8 < 1 limit, |¢(z)|? follows pc(x) but also shows fluctuations around it.
As [ gets lower, because § = N7 and 67 is fixed, then also the number of sites N ~ [ gets
lower: less sites compose the paths X7, hence statistics (like histograms) based on x{c are less
accurate. More sweeps I or more sites N (a lower 67) would improve the statistics hence |¢(x)[*.
All [¢ho(z)|?, pe(z) and |¢(z)|? are symmetrical around the z = 0 axis: this was expected as all
potentials are also symmetric.

Infinite well We discuss fig. (7). For all Sy cases the |x| > L/2 region is never explored:
a proposed move outside the well region makes ASg extremely high (due to V; x), hence such
a move is practically impossible. In the Sy = 10 case the peak of |¢y(z)|? is not completely
reached by |¢(z)|?: we couldn’t find an explanation to this anomaly. In the Sy = 1 case,
fluctuations of |¢(x)|> around po(z) are distributed in a comb-like pattern. This could be
explained recalling fig. (4): inside the well the particle behaves as in a null potential, hence
paths X’ are approximately straight lines, hence all xfc tend to accumulate around certain
points, the comb-like peaks. In the By = 1 case the two tails of |¢(z)]? are not discontinuous
at |z| = L/2 but they rather go to zero in a [1)y(z)|*> way. This might happen because moves
are always limited by an interval [—h;; h;], hence the boundaries of the potential |x| ~ L/2 are
never fully explored. An estimate Ey couldn’t be obtained because Fi, Fy depend on V, n,
Fy gives inconsistent results (it is a bad estimator) and Fy considers V’(x), which is null for
|z| < L/2.

Harmonic potential We discuss fig. (8). For Sy € {5,10}, |¢(z)|? follows almost perfectly
[v(x)|?: there is a peak at = 0 A and the PDF exponentially decreases at & — +00. As
temperature gets higher, the peak of po(z) gets lower and wider until po(z) is followed by
|¢(x)|%: the microstates population is growing so that it includes states where the particle can
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be found even further away from 2 = 0A. In tbhl. (2) Ej is contained within the error bars
of Ey\ for all wy, hence Ey; correctly estimates Fy regardless of the shape of the harmonic
potential. In tbl. (3) Ey = 5.273-1072°J is contained within the error bars of Fy; for all my:
Ey is independent of m, and we see the same applies to Ey. my in thl. (3) aren’t close to
unity, but nevertheless the C++ programme produces accurate and precise results.

Double well We discuss fig. (9). For By € {5,10}, |¢(z)|? broadly follows |¢(x)| but
|¢(z)|? is higher around the peaks and lower around the tails. This could be explained by the
asymptotic behaviour of V(z) that goes as z*: the potential may be too sharp for the moves,
meaning a too high ASg at the tails. As the histogram is normalized, if there are less visited
sites at the tails, there will be more at the peaks. |iy(z)|? shows two dunes, reflecting the
presence of two wells. When the temperature is low, po(z) displays two distinct sharp peaks.
As the temperature gets higher, the two peaks get lower and they start to merge: around
z = 0A a tunnelling of the potential barrier V, analogous to |i(z)|> emerges. Fig. (10)
displays this tunnelling effect. As V; is increased, |¢(x)|? reduces around z = 0 A and increases
around |z| = z,: the cost ASg of a move exploring the = 0 A region increases, hence the
MHA explores more often the ASg-favourable |z| = x, regions. The peaks separation in fig.
(11) can be explained with a similar argument: as x, gets larger, the kinetic part of ASg gets
bigger and so ASE.

3.4 Hydrogen bond

We simulate an H-bond using two different models: the fixed-R model [10], where X and Y are
still at a fixed R, and the free-R model, where X and Y are relatively free to move so R is free
to change. H can be substituted with an ionised deuterium atom denoted D [10].

3.4.1 Fixed-R model of the H-bond

Only H in the e_ potential is simulated [10]. Numerical parameters are my = 1673 for H and
my = 3345 for D [3], N = 100, Sy = 10, I = 10°, R = 1000, J = 500, Py = (1,1,1,1,1,1),
ho = 05, rr = 08, Sp = 0.3.

3.4.2 Free-R model of the H-bond

X,Y and H are simulated simultaneously. The H-bond is either intermolecular or intramolecular,
hence X and Y are chemically bonded to other parts of their respective molecule [9]: X and
Y can’t freely move because of this interaction, but they oscillate around their equilibrium
point. We modelize this limitation with an arbitrary trapping potential (given analytically and
numerically)

20 20
T — Ty TN — Ty
Vi(a) =V, (—L s ) & Ven(zy)=Viy (—NLN /Q’N) , (57)

where V. = Vp(x, £ L/2), x, is the equilibrium point and L the size of the equilibrium region.
Numerically, for both X and Y, Ly = 0.3, V., y = 1 and +z, y is varied (+ for Y, — for X). X
and Y don’t interact: the interaction between H and both XY is given by e_(r + R’), which is
calculated for every k-site, with R = (2])y — (2)x (we set the position of X (27)x < 0 and Y
(2])y > 0) and it is centred around r = [(2])y + (2)x]/2, hence R = R/2 — [(x1)y + (z])x]/2.
Crucially each proposed move for any particle considers the whole Euclidean action ASg =
(ASg)x + (ASg)u + (ASEg)y so that the system is bound as a whole. The global R of a whole
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simulation is calculated as the average

=

1 L= l
:WE 0 [(zh)y — (z})x] - (58)

B
Il

The error AR on R, computed analogously as AFy, was found to be AR < 1072 A hence it
was not plotted in figures. Numerical parameters are {(my);} = {mn,26567,26567} where
my = 1673 for H and my = 3345 for D (last two particles are X =Y = O an oxygen atom)
3], N =100, By = 10, I = 10°, R = 1000, J = 500, Py; = (1,0.4,0.75,0.4,0.4,0) (no swaps),
hg = 1, rr 2087 SB =0.3.

3.4.3 Measuring the bond length

The length of the H-bond d(X, H) has two definitions [10]:
1. r¢(R) [A]: the classical distance between X and the first encountered minimum of ¢_;
2. 71, [A]: the distance between X and the first encountered peak of |i(x)|?.

ro(R) is implemented by numerically finding the minimum of e through MATLAB’S fminbnd ()
function, while r,, & Ar,, is estimated as the center of the first encountered maximal bar of the
|¢(x)|? histogram (100 bins are used), with half the width of the bar as the error Ar,, on r,,.

3.4.4 Numerical results of both models and discussion
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Figure 12: Variation of |¢|*> along R. Tunnelling reduces and the two peaks of |¢|? separate.

Fig. (12) shows |¢(z)|? in the fixed-R model with varying R. |¢(x)? for R > 2.7 A isn’t
symmetric around z = 0 A. This might be an effect of the MHA on e_. R > 2.7 A is in the weak
bond regime, hence ¢_ starts to describe two distant wells separated by a increasingly larger
potential barrier (see fig. (3)): tunnelling decreases as R increases (|¢(z)|* — 0 around zy =
0[A] and the two peaks of |¢(z)|? increase and separate) and for R > 2.7 A it is almost non-
existent. The only way the MHA can visit these wells is by the means of moves such as global
displacement, mirror or center of mass displacement, which occur with a fewer frequency than
all the other moves. The MHA doesn’t switch between the wells often, hence X’ accumulates
around one of them.
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Fig. (13) shows the velocity distribution of an H
particle in the fixed-R model for R = 2.3 A. The j-
speeds vector v/ (R < j < I) has components vk' =
(miﬂ —21)/67 (0 <k < N — 1), and an histogram
is produced over all v [m/s]. The distribution has
the shape of a Gaussian curve centred at v = Om/s.
Consider the symmetry of e_(r + R/2) around r =
0 A: the H particle is equally likely to be in one of the
two wells, so it switches between them along sweeps.
Each migration contributes to one side (v > 0m/s or
v < 0m/s) of the distribution: overall contributions
are symmetric around v = Om/s. The distribution
decays exponentially as |v| gets larger. Large |v| have
an high kinetic cost in ASg, hence the decay is a
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Figure 13: Velocity distribution of all
thermalized sweeps.

consequence of the MHA: the H particle is more likely to have close to zero kinetic energy (low
kinetic cost). The H particle never reaches an speed higher than 10°m/s, 0.03% the speed of
light: this justifies the use of the path integral formalism as relativistic effects are negligible.
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Figure 14: Measured ZPE against R using a proton.
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Figure 15: Measured ZPE against R using deuterium.
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Figs.  (14) and (15) show Ey
against R for the two models compared
with the potential barrier e _(R/2) with
either H or D. Reference energies for H
come from [10]: fig. (14) agrees with
them. Qualitatively figs. (14) and (15)
are identical, which is expected, and
quantitatively they are almost identi-
cal, which is not. For a given model,
the difference of Eyy when H — D is
~ 1-1072J, hence negligible. The
choice of particle is irrelevant: no sec-
ondary geometric isotope effect is ob-
served. For a given particle, the differ-
ence of Fy in the two models is neg-
ligible: intrinsic properties of the sys-
tem don’t depend on the model. In the
strong bond regime Fy > ¢_(R/2), at
around R = 2.4 A they are equivalent
and after that point Fy < e_(R/2).
Bond nomenclature is verified: strong
bonds overcome the potential barrier,
weak ones don’t and moderate ones are
of the same magnitude. If the system is
bound then Fy\; < —D: it is always the
case except for the last 3 points in both
figures in the free- R model. This means
after R > 2.8 A the H-bond breaks.



1.2 e R . Figs. (16) and (17) show 7, = Ary,

1161 rc(R) | against R for H and D compared with

¥ e Measured 7, for H ro(R) in the two models. Values of R

112y . i - Measured r, for DT 4 o (17) couldn’t be controlled as in
=<t 1.08 3 1 fig. (16) because R is not known be-
S104r * I forehand. In figs. (16) and (17) r¢(R)
n % i | is the same because ro(R) is an analyt-

3 i (] ical property of e_. In the strong bond

0.96 1 % i regime ro(R) = R/2, as in that regime
0.92 there is only a single minimum centred

2 21 22 23 24 25 26 27 28 29 3 between X and Y (see fig. (3)), and

R [A empirical bond lengths align well with

Figure 16: Measured bond length against R using the ro(R), as |¢(z)[* is symmetrical (see
fixed- R model. fig. (12) for R = 2.3A). Then r¢(x)
decays as R gets larger in the moder-

1.2 w w =R w w w w w ate and weak bond regimes, as in these
116+ 3 T’MC(R) L forH| ] regimes there are two minima (see fig.
112l I ' Mgzzii q :m fzi Dl (3)) that drive apart as R increases.

} X m Denote (r,,)p, (Ary,)p the 7, Ar,, of

= 1.08 ¢ 3 i I i 1 particle P € {H,D}. In the moderate

£1.041 § % 1 bond regime 7¢(R) < (rm)p < (Tm)u
1 £ } 3 ﬂ i i 1 II within errors (Ar,,)u, (Ar,)p for both
models. In this regime the substitu-

0-96 1 tion H — D decreases r,,, in agreement
0.92 with reference [10]. At the beginning of

2 21 22 23 24 25 26 27 28 2 ) -
° R[5A] ° 829 3 the moderate bond regime, only in fig.

(17) and only for P = H an increase in
Figure 17: Measured bond length against R using the 1, with respect to ro(R) is observed,
free- R model. while [10] observes this phenomena for

both P € {H,D} in the fixed-R model.
This phenomena is expected in all models and also for P = D because close to R = 2.3A
it is By ~ —D (see figs. (14) and (15)). In the weak bond regime no inequality between
(rm)u, (rm)p can be clearly determined in both models. For both P € {H, D}, in fig. (16) we
see (1m)p =~ ro(R) while in fig. (17) we see (1,)p > ro(R). It was expected that figs. (16) and
(17) would be qualitatively close to being identical, but instead they differ. A possible error in
the MHA implementation could be the cause.

4 Conclusions

Feynman’s path integral formulation of quantum mechanics has been understood, justified
and presented with theoretical clarity and mathematical rigour. A formal derivation of the
Euclidean action by the means of a Wick rotation has been invented and the implications of
the latter have been highlighted. A complete quantum Monte Carlo C++ programme has been
written and successfully applied to toy models and the H-bond. The MHA was found to be
influenced in its execution by simulated system. Computational results regarding properties of
the three toy models, namely ZPEs, position PDFs in function of 8, and particle sizes, agree
with theoretical predictions in the limit of numerical errors. Computational results regarding
the H-bond do not agree with expectations: neither NQE (regarding measured ZPEs) nor
secondary geometric isotope effect (regarding measured bond lengths) are observed. Tunnelling
was observed in toy models and the H-bond.
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Further expansion of this work could modify the C++ programme to simulate 3D systems:
this way phase transitions, usually arising in 2D systems [19], could be observed. More focus
could be put in numerically implementing analytical methods to extract higher eigenenergies
E,~0, such as in [4, p.57]. A more formal study of the execution time of the MHA could give
important informations on the optimal values of Py; and r;: we hypothesise these values are
largely potential-dependant. The choice of k-indexes in S[X], for example approximating the
particle’s speed with a backward Euler method instead of a forward one, could be altered and
differences in the execution of the MHA could be studied.
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A Conventions of notation

We use the convention R, := [0; +oo[ and R_ :=] — 00;0]. Given a € C and B C C, we denote
aB C C the set composed of all elements of B all multiplied by a. For example the negative
imaginary axis (including 0) is /R_.

The identity operator in terms of position eigenstates and energy eigenstates is given re-

spectively by
I ::/dx|x> @ and L= |n) (], (59)
R n=0

where z € R and n € N. We denote with 1 the 2 x 2 identity matrix.

The notation |[a,b], usually written under the integral symbol when calculating complex
integrals, signifies a straight line contour oriented from point a to point b, where a,b € C. For
example if a = 0 and b = ¢ then [a, b] = i[0; 1] oriented from 0 to 1.

B Complete derivation of the path integral

This derivation is a combination of those found in [4, p.56-57] and [2]. The Hamiltonian
H=T+Vis separated into its kinetic energy part T and its potential energy part V. Discretize
the time interval ¢y —¢; in a lattice composed of N € N time steps of duration € = (¢; —¢;)/N.
Let A, B be two arbitrary operators: Trotter’s formula [18] states that

e nll_)IISOIIIe e”/m, (60)
By assuming N > 1 we can apply Trotter’s formula to get
N
K(f,i)= <$f‘ el TWW‘ >% <95f He_iET/he‘iEV/h xz> (61)

If we insert N — 1 identity operators in position space between each product then we get

/ / 1T /hy=icV /I ‘ $N71> <$N—1 ’ it /h =iV /I ‘ fo2> (62)

<£I§'2 ) e st/h —ieV/h ’ 1> <Q?1 ‘ e*i&f’/ﬁefisf//ﬁ ’ £K0> dxl e deib (63)

where it is denoted z; = xo, 2; = zy. It is clear that V |z) = V(z) |2) hence exp(—icV /h) |z) =
exp(—ieV (z)/h). In the momentum representation

2 .
5 _ D 1 1px
T and Ty = exp| ——1, 64

om ) V2rh p( h ) (64)

where p [kg - m/s| and, using the Gauss integral [16] (let a,b € C\ {0} with Re(a) > 0)

/ e~ b g — \/iexp ( ) , (65)
R a
it is possible to compute
- 1 1pT iep? IPT)—
715T/h‘ >:_ DT . p _pkl d
<x’“ ‘ ‘ 1) = onh / P ( r )P\ omn) P no )7

2

1 iep®  ip(ap — xpq)
=5 exp( + dp (66)

/ m
27rzh€ ( JUk - $k1)2) = A.exp (2h (xk — Tg— 1)2)
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for all k =1,..., N, where the constant A, is defined as

[ m
A= ——, 67
2mihe (67)
and hence it can be written

/dxl /de L exp (ZJZ‘;[ (24 — The 1)2—2'%V(xk1)D
:Aév/Rdxy'-/Rde_lexp (5 il[ (x’“_” 1>2—V(xk_1)]>.

C Proof of properties of f

i

Let f,g : C — C be two continuous functions and define f: C — C to be such that f(zz) = f(2).
We assert the following properties:

fto=7F+7

fog=1/fogy, (69)
df _ df
dz—lg

The first property follows from the fact that if f(zi) = f(z) and §(zi) = g(z) then f(zi) +
g(zi) = (f + g)(z) and this proves that f/qt/g(zz) = f(zi) + §(zi). For the second property
consider g(zi) = g(z), then (f 0 g)(2i) = (f o g)(2) so that fog = %. The third property
can be seen by differentiating with respect of z on both sides f(zz) = f(z). This gives

2 Fei =i e = L 2) (70)

—_——

and therefore df/dz = idf/dz.

D Explicit calculation for the zero-point energy
Noting ' = Ty = Ty we can compute

Ey = lim h—an(ﬁ)
B—00

Z
=g ﬁ / da’ / — exp ( [im]) Di(r) (71)
wgf_m/&rW(@gmﬁwx

where H(Z(3), (dz/d7)(B)) is the Hamiltonian of the system. Because time is cyclic any time
7 € [0; 5] could have been selected as the end time without changing the physics. Hence, in
sight of a numerical implementation, we can take the average over all time slices [6]

H<i(ﬁ),d—7 ) NZH( (kor), 2 k67>—NZ[ (I’“_“ 1>2+v(:zk1)],
(72)
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where the velocity is approximated with a forward Euler scheme. Hence we can continue

. 2 -
Jodn fydin-id S | (3502) 4 Vi | s
EO = lim

proo fR dzo fR day--- fR dz y_ e SelE(T)]/h (73)
1 g, m i‘k — i'kfl 2
— }E{}o N par 9 (T) +V(Tr-1)]| )-

E Proof of the Virial theorem

We follow [4, p.57]. Consider the ground state expectation value of the operator [i:ﬁ, H } :

(0| [a5.11) |0) = (0] @p(Fr10)) = (0] f1)p |0) = 0. (74)

where in the last equality we used the fact that H = 7'+ V is hermitian. The commutator can
be explicitly computed as

B p R o a B h a . B h 0 a
{:vp, G- + V} = mhax (V(m) - 8%2) +ih (V($) om 8$2> (max)

- m{ (mh—28—3 — 2V (z) - xV(x)ﬁ)

2m Ox3 ox
0 o [0 0?
(R , ) I A

‘ , ﬁ2 82 ) R ,
3 m%@> =1ih (—xV () — E@) =ih <2T —zV (x))

because in position representation

A . a A~ 2 82
p= _Zhﬁ_x and p° = —h 22’

hence it is found that

<0 ‘ T ‘ 0> — <0 ‘ gV/(x) ‘ 0> . (75)

F Convergence of the Metropolis-Hastings algorithm

This proof is a mix of those in [19] and [4, p.59]. Consider a large number of identical Markov
chains. The probability the move x — y is accepted is given by

Px—y)=Tx—y) Ax—Yy), (76)

where T is the transfer probability and A the acceptance probability of the move. Assume that
for the transfer probability the property of ‘Detailed balance’

Tx—y) =Ty —x) (77)

is verified and consider an acceptance probability of the form

A(x — y) = min(1,r) = min (1, %) : (78)
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Then, the variation of the number of chains that evolve as x — y is
AN(x - y)=N(x)P(x »>y) — N(y)P(y — x). (79)

At equilibrium ([19] shows that equilibrium is always reached) AN(x — y) = 0 for all possible

X,y, hence
N(y) Plx—y) Ax—y) (80)
Nx) Ply—x) Aly—x)
If w(y) > w(x) then r > 1 so that A(x - y) =1 and A(y — x) = 1/r. If w(x) > w(y) then
r < 1sothat A(x —y) =r and A(y — x) = 1. In both cases

——L =r=——< (81)

hence at equilibrium N (x) ~ w(x), which is the assertion.

G Numerical implementation of the Cauchy distribution

The Cumulative distribution function (CDF) of a random variable distributed according to the
Cauchy distribution, of parameters (zo,v) = (0, h;), is [20]

F(z) = L arctan (h%) + % (82)

T
Its inverse is
F~'(y) = h; tan lﬂ (y — %)] : (83)
If Y is a random variable uniformly distributed in the interval [—1/2,1/2] then
X = F 1Y) = hjtan (nY) (84)

is distributed according to the Cauchy distribution.

H Justification of unit prefixes

We justify the choice of the powers (). For kg and h the choice is dictated by their experimental
value. For the mass m we are interested to modelize subatomic particles such as electrons or
protons, which are of order () = —30. For the position = we consider atomic distances, which
are of the order of 1 A hence of order Q = —10. For the potential V experimental data show
that atomic potentials are of order ) = —20 [10]. For the angular frequency w of an harmonic
oscillator, we see that
R TR AT 2 2 2Q—50

V(z) = SMW T = SmNWNTY - 10 J (85)
and therefore in order to have a potential of order —20 it must be () = 15. For d7 we consider
the approximation of the kinetic energy

1 1 1 Sy’
K = —mv® = —mpav? - 107 kg ~ —my 9TN Y 10720507, (86)
2 2 2 5’7’]\[

The Lagrangian is K — V', therefore having K of the same order as V would be advantaging.
Special relativity imposes the range of values [0;c¢| for the velocities v of bradyons, where
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¢ = 299792458 m/s is the speed of light in a vacuum, and relativistic effects have to be taken
into account when v > 0.1c¢ [21]. The theoretical framework is not relativistic, therefore we
won’t account for those effects and we will assume v < 0.1¢ in our simulations. At this point
the most sensible guess of the order of v would be (8 — 1)/2 = 3.5, but instead we chose to
assign the order 5 so that for 7 Q = —15: in fact this ensures that the order of K is —20 as
wished. Finally for the simulation time f recall that 5 = NJT and therefore the order of 5 can
be the same as 7.

I Source code

Downloadable source code is available at https://github.com/MightyBee/PIMC-Hbonds.

#define _USE_MATH_DEFINES

#include <vector>

#include <array>

#include <iostream>

#include <fstream>

#include <string>

#include <random>

#include <memory >

#include <ctime>

#include <cmath>

#include "ConfigFile.tcc" //Villard L., Computational Physics I-II, EPFL,
2018-2019.

using namespace std;
double hbar (10.54571628); // IUPAC

std::mt19937 rng(time (0));

[ HHHBRAHHBSA BB RS AR B RS H RS SR B RS S #HE NOTES ####44## S 4H#SHHH RS A BB RS R HHSSHHHE/

- theoretically x_0, x_1, ... , x_(N_slices) , (N_slices+1) points
- we consider boundary conditions, x_0 = x_(N_slices)
- hence we only consider x_0, x_1, ... , x_(N_slices-1) , N_slices points

- to get the "full picture" simply add one more point, equal to x_O

*/

/*x###### PLAN OF THE CODE #####//
- Part A : headears

- A.1 function headers
- A.2 definitions of class "Potential_ext" and inherited classes
- A.3 definitions of class "Potential_ext" and inherited classes
- A.4 definitions of class "System"
- Part B : main
- B.1 : parameters acquisition and system initialization
- B.2 metropolis algorithm
- B.3 statistics writing
- Part A : definitions
- C.1 : definitions of the methods of class "Potential_ext" and
inherited classes
- C.2 : definitions of the methods of class "Potential_ext" and
inherited classes
- C.3 definitions of the methods of class "System"
- C.4 function definitions
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66

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105

*/

VA 222323555500 EEE R EEEEEEEEEEEEEEEE SRS e S S Rk Y
[/ HBHH B AR BB ABH RS H BB BB BH B RS SH BB ABH RS A BB RS H B R B G H B BB S BH BB SH B RSB BH RS SR HR//

[/ HHHB SRR R RS RS H SRS Y HUHHHAHHH B SRR H RS RBHR SR/ /
[/ HHHBR GRS H B SRR RS RS Y PART A : HEADERS HU#HHAHHH B SRR SR BHSSHR//
ATt HU#HHAHHHHH SRR SRR HSSHR)//

[/ HHHB R AR AR AR R R BB HHHHHH S SRR S S S S S BB BB R BB HHHHH SSRGS GGG S S S BB R H BB HHHH SRR/ /
[/ HHHH B AR BB HBH RS H B BB BB H BB S A B BB ABH RS H B BB GH B R B G H B BB S BB BB SH BB SRR RS SR HE )/

[/ HHHH AR HHH AR B HBS AR HBF SR BB SR AR BH SR BH B A BB RS SHH B SRR HH SRR H RS GH B RSB H RS SR HE//
[/ #ERSS St H S S S S SSSS# 444 A1 © FUNCTION HEADERS ############44444#######//
[/ HBHH B AR BB ABH RS H BB BB S B H BB A AR BB SR B H RS S BB RS H B R B S S BB B S B BB RS S BB BB BH RS SR HR//

// Generate a random (uniform) double between ’min’ and ’max’
double randomDouble (const double& min=0.0, const double& max=1.0,
const bool& closed=true);

7 // Generate a random double from a normal Cauchy distribution

double CauchyDistribution () ;

// Generate a random double from one of the implemeneted distributions
double GenerateDist (const double& h);

[/ HHHH AR HHHARHHBSRBH B S R BB RS AR BH SR B H AR B BB S R BB SRR H B SR B R RS HHH SRR RS R HRHE//
[/ #eRSS et H S S S # 44 A2 © CLASSES Potential_ext ##########44S#####H###S//
V&2 222323555500 EEE R EEEEEEEEEE RS SRS S S skt Y

// Abstract class for external potential
class Potential_ext {
public:
// pure virtual method => abstract class
// return V at point x
virtual double operator () (const double& x) const = O;
double eO_estimator (const double& x) const{return O0;1};

};

// Class for a null potential
class PotExt_null: public Potential_ext {
public:
double operator () (const double& x) const {return 0.0;}
I

// Class for a harmonic potential
class PotExt_harm: public Potential_ext {
public:
PotExt_harm(const ConfigFile& configFile);
double operator () (const double& x) const;
private:
// mass and squared frequency
double m, omegaZ2;

};
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106
107
108
109
110
111
112
113

114

116
117
118
119
120
121

122

127
128
129
130
131
132
133
134

136
137
138
139
140

141

159
160
161
162
163
164

165

// Class for a double well potential
class PotExt_double:

public:

PotExt_double(const ConfigFile& configFile) ;
double operator () (const double& x)

private:

// barrier height and position of the wells

double VO,

5 s

// Class for a square potential (barrier for VO>0 and well for VO0<O0)

class PotExt_square: public Potential_ext {

public:

PotExt_square (const ConfigFile& configFile) ;
double operator () (const double& x)

private:

// potential height,

double VO,

5 s

// Class for a sinusoidal potential

x0;

x0, L;

class PotExt_sin:

public:

public Potential_ext {

const;

const;

position of the centre and width of the square

public Potential_ext {

PotExt_sin(const ConfigFile& configFile);
double operator () (const double& x) const;

private:

// potential height and period

double VO,
i

L;

// Class for a Lennard-Jones potential

class PotExt_LJ:
2 public:

public Potential_ext {

PotExt_LJ(const ConfigFile& configFile);

double operator () (const double& x)
5 private:

double VO,

7 };

x0 ;

// Class for a H-bond potential

class PotExt_0OHbonds:

public:

PotExt_OHbonds (const ConfigFile& configFile);

// Morse potential
double Vmorse (const double& x) const;

// First derivative of Morse potential
double dVmorse (const double& x) const;

// Estimator of zero-point energy
double eO_estimator (const double& x) const;

const;

public Potential_ext {

// Return the value of the potential

double operator () (const double& x)

private:

// Characteristic constants of the potential

double D,

// R : distance between the donor and accpetor

double R,

a, r0,

DELTA;

deltal,

b,

R1;

const;
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182
183
184
185
186
187
188
189
190
191
192
193

194

197

198

214
215
216
217
218
219
220

221

223
224

225

V& 2223235555005 EEEEEEEEEEEEEEEEEEEEE SRS RS E S Rk Y
[/ HHHA SRR H 4 H#H A .2 © CLASSES Potential_int #########44##A4##HSH#H//
[/ HBHHRH AR BB SR B HBGH BB R B HH BB RSB BB GG BB H RS A BB RS SHH B G S B BB S SBHH RS AR B R SR R RS SR HR//

// Abstract class for internal potential
class Potential_int {

; public:

// pure virtual method => abstract class
// return V for particle 1,2 at position x1,x2 resp.
virtual double operator () (const double& x1, const double& x2) const = 0;

};

// Class for a null internal potential (no interactions between particles)
class PotInt_null: public Potential_int {
public:

double operator () (const double& x1, const double& x2) const {return 0.0;}
};

// Class for a harmonic potential between two particles
class PotInt_harm: public Potential_int {
public:
PotInt_harm(const ConfigFile& configFile);
double operator () (const double& x1, const double& x2) const;
private:
// stifness and rest length
double k, 10;
};

// Class for a Lennard-Jones potential between two particles
class PotInt_LJ: public Potential_int {
public:

PotInt_LJ(const ConfigFile& configFile);

// standard Lennard-Jones potential

double LJ(const double& r) const;

// Lennard-Jones with parameters defined below

double operator () (const double& x1, const double& x2) const;
private:

double VO, x0, G;
};

[/ HBHHRH AR BB SR B H RS A BB R B HAH BB A AR BB ABH RS A BB RS H B R B G S B BB S SBBH RS HH RSB B RS R HRHR//
[/ #uH#H R h SR H A H RS #HS#H A3 © CLASSES System ######################R##//
YA L3333 EEEEEEEEEEEEEE SRS 5 5 5 5 5 sk k k5 Y

// Class System : - contains all the physical properties of the systenm
// considered, as well as the number of slices

// - it can generate moves but it’s not this class that
// will porpose it

class System {

public:
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237
238
239
240
241
242

246

259
260
261
262

263

// constructor

System(const ConfigFile& configFile);

// initlaize the system : hot start

void initialize(const double& pos_min, const double& pos_max);

// write in an output file the external potential used

void write_potExt(const string& output);

// return the number of particles in the system

size_t nb_part() const {return N_part;}

// return the number of slices in the system

size_t nb_slices () const {return N_slices;}

// return the number of time each site is visited by MH algorithm

vector<vector<int>> get_visits() const {return verif;}

// write the poisitions of all particles

ostream& write(ostream& output) const;

// return the kinetic term of a particle between a bead and a neighbour

double kinetic(const int& particle, const int& bead, const int& bead_pm,
const double& displacement=0.0) const;

// compute the whole euclidean action directly

double energy();

// return the euclidean action measured along the simulation’s progress

double get_H(){return H;}

// returns if a move is accepted or not
bool metropolisAcceptance();

// different moves possible

bool localMove(const double& h);

bool globalDisplacement (const double& h);

bool bisection(const double& h, const double& sRel);
bool swap();

bool inverse () ;

bool symmetryCM() ;

// energy measures
void measure_energy (double, double);
void average_energy();

264 private:

//////// physical parameters ////////

unsigned int N_part;

unsigned int N_slices;

double beta;

double d_tau;

int q;

vector <double> mass;

double omega;

unique_ptr<Potential_ext> ptr_Vext;
unique_ptr<Potential_int> ptr_Vint;

// table of positions : first index indicates the particle
// second index indicates the slice
vector<vector<double>> table;

//////// utilitary variables ////////

// mm : time slice randomly selected during each iteration,
// mm_plu=mm+1, mm_min=mm-1 with boundary conditions
unsigned int mm, mm_plu, mm_min;

// particle randomly selected during each iteration
unsigned int nn;

// displacement proposed
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286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

329

330

339
340
341
342
343
344
345

double dis;

// part of the action that is changed by moves
double s_old, s_new;

// euclidean action

double H;

vector<double> energies_psi;
vector<double> energies_h;
vector<vector<int>> verif;

};

ostream& operator<<(ostream& output, const System& s);

[/ HHHB R H AR AR R R R B HHHHH B S SRR GGG H BB BB BB BB HHHH SSRGS RS S S SRR BB HHH B RS/ /
Y& 32232355550 EEEEEEEEEEEEE SRS S S e e S e Tt Y

[/ HHH SRR RSB H SRR Y HUGHHAHHHH SRR H RS R B RS/ /
[/ HHHBR SR AR R SRR RS RS Y PART B : MAIN HU#HHAHHH B SRR RS R RS SR/ /
ATttt He#SSH SR HHHHH SSRGS SRR YR//

[/ HHHB SRR H AR B R B HHHHHH SSRGS GG S BB BB R BB HHHHH SRS GGG S S SRR B BB HHHH SRR/ /
[/ HEHH B AR BB SR B HBGH B BB BB H BB HHH BB A BH RS H R BB SR B R B G H B BB S BH BB SH BB R B R RS SR HR//

int main(int argc, char* argv[]){

[/ HHHH BB H BB BB AU H BB BB R RS ABHBGH BB SRS B HHGH BB RS SA BB RS H R BB S S R R RS S R BB SRHHR//
[/ #uHHSah S H S ## A4 B. 1 © PARAMETERS ACQUISITION ###########4u###4##//
[/ HRH BB R R R B R AR HBH AR B R B SR BH RS A R BB SRR H B GRS A B BB SRBH RS SR BB SRR B SR RHH SR HBHE//

[/ HHHSS St H S S S # 44 VILLARD LIBRARY ######4u#######4S####1###//

// Default input configuration file

string inputPath("configuration.in");

if (argc>1) // specified input file specified by user
inputPath = argv[1];

// Parameters are read et stocked in a
ConfigFile configFile (inputPath);

map" of strings

for(int i1(2); i<argc; ++i) // complementary inputs
configFile.process (argv[i]);

[/ #unHASn RS H RS SR H SR #H#S## READ PARAMETERS ########4##S##H#A#M#HH###E//

// number of Monte Carlo iterations (aka sweeps)

unsigned int N_sweeps(configFile.get<unsigned int>("N_sweeps"));

// number of thermalisation sweeps

unsigned int N_thermalisation(configFile.get<unsigned int>("N_thermal"));
// initial minimum position

double pos_min(configFile.get<double>("pos_min"));

// initial maximal position

double pos_max(configFile.get<double>("pos_max"));
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346 // displacement parameter of a point in the path

347 vector<double> h(3,configFile.get<double>("h"));

348 // proportion of each move

349 double p_loc(configFile.get<double>("p_local"));

350 ~ double p_dsp(configFile.get<double>("p_displacement"));
351 double p_swap(configFile.get<double>("p_swap"));

352 double p_inv(configFile.get<double>("p_inverse"));
353 double p_sym(configFile.get<double>("p_symmetryCM"));
354 double p_bis(configFile.get<double>("p_bisection"));
355 // relative size (0 to 1) of bisection move

356 double s_bis(configFile.get<double>("s_bisection"));
357 // numbers of tries for each moves

358 vector<unsigned int> NbTries (6,0);

359 // acceptance rates for the three moves

360 vector <double> accrate(6,0.0);

361 // "instantaneous" acceptance rate for local moves
362 double tmp_accrate (0.0) ;

363 // ideal acceptance rate for local moves

364 double idrate(configFile.get<double>("idrate"));

365 // output is written every n_stride iterations

366 size_t n_stride(configFile.get<size_t>("n_stride"));

369 //0utput files
370 string output(configFile.get<string>("output"));

371 string output_pos (output+"_pos.out");

372 ofstream fichier_output (output_pos.c_str());
373 fichier_output.precision (15); // Precision
374

375 string output_energy (output+"_nrg.out");

376 ofstream fichier_energy(output_energy.c_str());
377 fichier_energy.precision (15); // Precision
378

379 string output_rate (output+"_rate.out");

380 ofstream fichier_rate(output_rate.c_str());
381 fichier_rate.precision (15);

382

383 // initialization of the system

384 System s(configFile);

385 s.initialize(pos_min,pos_max) ;

386 s.write_potExt (output) ;

387 fichier_output << s << endl;

388

389 //UNCOMMENT IF YOU WANT TO COMPARE WITH OUTPUT2_NRG.OUT
390 //s.measure_energy () ;

391 //double VO(configFile.get<double>("R"));

392 //double VO(configFile.get<double>("V0"));

393 //double x0(configFile.get<double>("x0"));

394

395 double last_measured_time (time (0));

396

397

398 [/ HHHBRBRA RS SRR B R R R BB HHHHH R RS S RS S S S S S BB B R B BB HHHHHSS SSRGS S S SR R B R R R B RS/

399 [/ HHRS St H S AR 444 B.2 : METROPOLIS ALGORITHM ##############44uuus//
400 YU L T 2333335550000 EEEEEEEEEEEEEEEEEE TS S 5 3 3355 YN
401

402 //For every sweep...

403 for(size_t 1(0); i < N_sweeps; i++){

404

405 // show progress of the simulation
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407
408

109

410
411
412
413

114

416
417
418

119

427
428
429
130
431
432
433
434
435

436

438
139
440

141

443
444
445
146
447

448

459
460
461
162
463
464

465

if (time (0) - last_measured_time >= 5){
last_measured_time = time (0) ;
cout << floor ((double)i/N_sweeps*100) << " 9" << endl;
}

//For every particle...

/*(we try one average each move for each particle one time every sweep
if all moves proportions are set to 1) */

for(size_t j(0); j < s.nb_part(); j++){

////////// local move //////////
/*if proportion of tries compared to the number of sweeps is
smaller than the target, try a move*/
if (NbTries [0]1*1.0/((i*s.nb_part()+j+1)*s.nb_slices()) < p_loc){
tmp_accrate=0.0;
for(size_t k(0); k < s.nb_slices(); k++){
NbTries [0]++;
if (s.localMove (h[0])){
accrate [0] ++;
tmp_accrate++;
3
X
tmp_accrate/=s.nb_slices ();
// adjust the parametr h to reach the ideal accpetance rate
h[0]*=tmp_accrate/idrate;
¥

////////// global displacement //////////
/*if proportion of tries compared to the number of sweeps is
smaller than the target, try a move*/
if (NbTries [1]1*1.0/(i*s.nb_part()+j+1) < p_dsp){
NbTries [1]++;
if (s.globalDisplacement (h[1])){
accrate [1]++;
}
}

////////// bisection //////////
if (NbTries [2]*1.0/(i*s.nb_part()+j+1) < p_bis){
NbTries [2] ++;
if(s.bisection(h[2], s_bis)){
accrate [2] ++;
}
}

/111117777 swap [//////////
if (NbTries [3]1*1.0/(i*s.nb_part()+j+1) < p_swap){
NbTries [3]++;
if(s.swap()){
accrate [3]++;
}
}

////////// inverse //////////
if (NbTries [4]1*%1.0/(i*s.nb_part()+j+1) < p_inv){
NbTries [4] ++;
if (s.inverse ()){
accrate [4]++;

3
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486
487
488
489
490
491

492

////////// symmetryCM //////////
if (NbTries [6]1*1.0/(i*s.nb_part (O+j+1) < p_sym){
NbTries [6]++;
if (s.symmetryCM ()){
accrate [5]++;

}

[/ HHddHH SRS RS RS #EE OUTPUT IN FILE ######4#H##ARSSHARSHARFHARHHR//
if ((i%n_stride) == 0){
fichier_output << s << endl;
fichier_energy << s.energy() << " " << s.get_H() << endl;
fichier_rate << tmp_accrate << endl;

//Energy measurement
if (i >= N_thermalisation){
//fichier_energy << s.energy() << " " << s.get_H() << endl;
//s.measure_energy (VO, x0);
}
}
}
fichier_output.close();
fichier_energy.close();
fichier_rate.close();

[/ HRHHHAH R BB AR AR B H BB HB SR B R RS R B RS R RHBGSB BB A BB RS G R BB SRR B SR RH B SR HBHE//
[/ ###SS St HH S A S S S 44 B.3 ¢ STATISTICS WRITING #############44444444//
[/ HHHHHBRA RS S AR BB R B BB HHHHH SRS S RS S S H A BB B R R BB HHHH S SRS SRS SRS R R 1 H S/

// statistics on the moves
// number of tries and acceptance’s rates
string output_stat (output+"_stat.out");
fichier_output.open(output_stat.c_str());
fichier_output.precision (15);
for(size_t i(0); i<accrate.size(); i++){
accrate[i]/=NbTries[i];
fichier_output << NbTries[i] << " " << accrate[i] << endl;

3

// statistics on the visits of patricles and slices
for(const auto& part : s.get_visits()){
for(const auto& v : part){
fichier_output << v/(NbTries[0]*1.0/(s.nb_part()*s.nb_slices()))
<< n n ;

}
fichier_output << endl;
fichier_output.close();

//Energy
s.average_energy () ;

/) HAHAH AR R R AR RS RS H AR RS RS HAHAS END OF MAIN ######H#HAHAHHSHAHAHUHHAHAHAHHR//
return O0;
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35 // HHHHHHHHHHHHHHHH SRS S S S S S A BB BB R BB HHHHHH S S SRS S S S S S AR B B R BB HHHHH S S SRR S SHHR//
s/ /AR H B HH B SRR B S B BB BB BB RS A BB RS HBHBS S B BB G H BB S H BB GG R B R RSB B RS R B R RS SR HR//

[/ RS H B HH SRR RS RS Y HUHHH SR H A S SR B RS R B SRR/ /
[/ HHHB R AR R SRR H SRS Y PART C : DEFINITIONS HU#HHAHHHH A SRR B SR RS SR/ /
ATttt HU#HHHHHHH SRR RS R B HASHR)//

YA L 2333330 EEEEEEEEEEEE SRR 3  5 3 5 5k k k5 Y
[/ HBHH B AR BB ABH RS H BB BB S B H BB HH BB SR B H RS SR BB GRBHBSH BB BB SR HH RS R BB SRR R RS SR HR//

sa5 [/ HHHHHHHHHHHHHHH BB S GG GGG H S A BB B R BB BB HHHH S GGG GGG S S S SRR R B BB HHHHH S S SSRGS RS SR/
s // ########### C.1 : CLASS ’Potential_ext’ METHODS DEFINITIONS ##########4#4#//
Y& 32232355550 EEEEEEEEEEEEE SRS S S e e S e Tt Y

[/ #uHHSRn RS R RS R AR HH S H#HE PotExt_harm  ###H###HAHHHSHHHS SR H AR HHSRHH//
///// constructor /////
PotExt_harm::PotExt_harm(const ConfigFile& configFile)

Potential_ext (),

m(configFile.get<double>("mass")),

omega2 (pow(configFile.get<double>("omega") ,2))

{3

///// potential opertor /////
double PotExt_harm::operator () (const double& x) const {
return 0.5 * m * pow(x, 2) * omega?2;

}

[/ HHHHS R R R R RS SR RS RH RS #H#E PotExt_double  ######4#H##HH#HS SR B RS HH RS RHH//

5 ///// comnstructor /////

s PotExt_double::PotExt_double(const ConfigFile& configFile)
Potential_ext (),

VO(configFile.get<double>("V0")),
x0(configFile.get<double>("x0"))

{}

///// potential opertor /////

double PotExt_double::operator () (const double& x) const {
572 return VO*pow (pow(x/x0,2)-1,2);
575 }

[/ HuH#S SRR A H SR #H S H#E PotExt_square  #########H#SHHHS SR H AR H SR RHH//
///// constructor /////
PotExt_square::PotExt_square(const ConfigFile& configFile)

Potential_ext (),

VO(configFile.get<double>("V0")),

x0(configFile.get<double>("x0")),

L(configFile.get<double>("L"))

{3
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///// potential opertor /////
double PotExt_square::operator () (const double& x) const {
if (abs(x - x0) < L/2){
return VO;
}elsed{
return O;

}

[/ HERS SR HH B SSRGS SR HH#HH PotExt_sin  #####HHHHHHHSSSSSS S SRR R BB HHHY//
///// constructor /////
PotExt_sin::PotExt_sin(const ConfigFile& configFile)

Potential_ext (),

VO(configFile.get<double>("V0")),

L(configFile.get<double>("L"))

{}

///// potential opertor /////

double PotExt_sin::operator () (const double& x) const {
return 0.5*V0O*(1-cos (2*M_PI/L*x));

}

[/ HERSS S H RS S SSRGS SR SRR H#H#HE PotExt_LJ  ######HHHH#HHSSSSS S S BHHHHHHHS//
///// constructor /////
PotExt_LJ::PotExt_LJ(const ConfigFile& configFile)

Potential_ext (),

VO (configFile.get<double>("V0")),

x0(configFile.get<double>("x0"))

{3

///// potential opertor /////

double PotExt_LJ::operator () (const double& x) const {
return 4 * VO * (pow(x/x0,-12) - pow(x/x0,-6) );

}

J/ HEHBEHBRBBAB AR B HAF B BR B AR RRH PotExt_OHbonds HHHAHHBHAHAHBHHAH AR BHBRBHAHR//
///// constructor /////

s PotExt_OHbonds::PotExt_OHbonds (const ConfigFile& configFile)

Potential_ext (),

D(83.402), a(2.2), r0(0.96), deltal(0.4%D), b(2.2), R1(2*r0+1/a),
R(configFile.get<double>("R")),

DELTA (deltal*exp(-b*(R-R1)))

{}

///// Morse potential /////

double PotExt_OHbonds::Vmorse(const double& x) const{
return D#*(exp(-2%a*(x-r0))-2*xexp(-a*(x-r0)));

}

///// first derivative of Morse potential /////
double PotExt_0OHbonds::dVmorse (const double& x) const{
return 2*a*xDx(exp(-a*(x-r0))-exp(-2*xa*x(x-r0)));

}
///// potential opertor /////

double PotExt_0OHbonds::operator () (const double& x) const{
if (abs(x) < 8){
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659
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return 0.5%(Vmorse (R/2+x)+Vmorse(R/2-x) - sqrt(pow(Vmorse(R/2+x)-Vmorse (
R/2-x) ,2) +4*DELTA*DELTA)) ;
telsed{
return 0.0;
}
}

///// estimataor of zero-point energy /////
double PotExt_OHbonds::eO_estimator (const double& x) const{
return x/4 * (dVmorse(R/2+x) - dVmorse(R/2-x) - (Vmorse(R/2+x) - Vmorse (R
/2-x)) *(dVmorse (R/2+x) + dVmorse(R/2-x))/sqrt(pow(Vmorse (R/2+x) - Vmorse (
R/2-x), 2) + 4xDELTA*DELTA));

[/ HBHHRH AR BB SR B H RS A BB R B HAH BB A AR BB ABH RS A BB RS H R BB G HBHBSSBHH RS H B RSB R RS R HE )/
[/ ########### C.2 : CLASS ’Potential_int’ METHODS DEFINITIONS ##########4#//
YA 223333300000 EEEEEEEEEEEEEE SRR S 5 5 5 5 5 sk E E Y

[/ HERS SR A S SRS ### 4 PotInt_harm ###HHHHHHHHHAASAAAAA BB R BB HHHS//
///// constructor /////
PotInt_harm::PotInt_harm(const ConfigFile& configFile)

Potential_int (),

k(configFile.get<double>("k")),

10(configFile.get<double>("10"))

{3

///// potential opertor /////

double PotInt_harm::operator () (const double& x1, const double& x2) const {
return 0.5*kx*pow(abs(x2-x1)-10,2);

}

[/ HERSS St HHHH S S GGG SR H##H#H PotInt _LJ #############SSSSSS SRR R B HHHHS//
///// constructor /////
PotInt_LJ::PotInt_LJ(const ConfigFile& configFile)

Potential_int (),

VO(configFile.get<double>("Vmin")),

x0(configFile.get<double>("x0")),

G(configFile.get<double>("G"))

{3

///// standard Lennard-Jones potential /////
double PotInt_LJ::LJ(const double& r) const {
if (r>0.35){
return pow(r,-12) -2*xpow(r,-6) ;
Yelse{
return pow(0.35,-12) -2xpow (0.35,-6) ;
}
}

///// potential opertor /////

double PotInt_LJ::operator () (const double& x1, const double& x2) const {
return VO*xLJ(abs(x1-x2)/x0);

}
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WERVE:$:3:3:3:3:3: 335555555 5 5 5 E E R S k5 53 3 3 322 E Y
704 [/ #####H#H#HS#H#A#H® C.3  CLASS ’System’ METHODS DEFINITION ###############4#//
VIR 3:3:3:3:3: 3355555555555 R G G E  E E EE g 55553 3 3 355 55 5 5 EEEEE Y
706

707

708 // HHHHHBHHBHABBA A AR BB B HHHHARE constructor HHHHHHHHARAAAAAHBHHHHHHSRRRAL//
700 System::System(const ConfigFile& configFile)

710 N_part (configFile.get<unsigned int>("N_part")),

711 N_slices(configFile.get<unsigned int>("N_slices")),

712 beta(configFile.get<double>("beta")),

713 d_tau(beta/N_slices),

712 mass(N_part,configFile.get<double>("mass")),

715 omega (configFile.get<double>("omega")),

716 table (N_part, vector<double>(N_slices, 0.0)),

717 mm (0) , mm_plu(0), mm_min(0), nn(0),

718 dis(0.0), s_01d(0.0), s_new(0.0), H(0.0),

719 verif (N_part, vector<int>(N_slices, 0))

720 {

721 for (unsigned int i(0); i<N_part; i++){

722 mass [i]l=configFile.get<double>("m"+to_string(i+1));

723 }

724 // choosing the external potential

725 string V_ext(configFile.get<string>("V_ext"));

726 if (V_ext=="null") ptr_Vext = move(unique_ptr<Potential_ext>(new
PotExt_null ()));

727 else if(V_ext=="harmonic") ptr_Vext = move(unique_ptr<Potential_ext >(new
PotExt_harm(configFile)));

728 else if (V_ext=="double") ptr_Vext = move(unique_ptr<Potential_ext>(new
PotExt_double (configFile))) ;

729 else if(V_ext=="square") ptr_Vext = move(unique_ptr<Potential_ext>(new
PotExt_square (configFile)));

730 else if (V_ext=="sin") ptr_Vext = move(unique_ptr<Potential_ext>(new
PotExt_sin(configFile)));

731 else if(V_ext=="LJ") ptr_Vext = move(unique_ptr<Potential_ext >(new
PotExt_LJ(configFile)));

732 else if(V_ext=="0Hbonds") ptr_Vext = move(unique_ptr<Potential_ext >(new
PotExt_OHbonds (configFile))) ;

733 elsed{

734 cerr << "Please choose a valid potential." << endl;

735 }

736 // choosing the internal potential

737 string V_int(configFile.get<string>("V_int"));

738 if (V_int=="null") ptr_Vint = move(unique_ptr<Potential_int >(new
PotInt_null ()));

739 else if(V_int=="harmonic") ptr_Vint = move(unique_ptr<Potential_int >(new
PotInt_harm(configFile)));

740 else if(V_int=="LJ") ptr_Vint = move(unique_ptr<Potential_int >(new
PotInt_LJ(configFile)));

741 elseq{

742 cerr << "Please choose a valid potential." << endl;

743 }

747 // initialize random paths for each particles

748 void System::initialize(const double& pos_min, const double& pos_max){
749 for(auto& particle : table){

750 for (auto& pos : particle){

751 pos = randomDouble (pos_min, pos_max);

752 T
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753 T
754 H=energy O ;
755

758 void System::write_potExt(const string& output){
759 string output_pot (output+"_pot.out");

760 ofstream f_pot (output_pot.c_str());

761 f_pot.precision(15);

762 size_t N(10000) ;

763 double x(0.0) ;

764 for(size_t 1(0); i<N; i++){

765 double xi(-50.0), xf(50.0);

766 x=xi+ix(xf-xi)/(N-1);

767 f_pot << x << " " << (*ptr_Vext) (x) << endl;
768 }

769 f_pot.close();

770 }

773 // write the paths of all particles in one line
774 ostream& System::write(ostream& output) const{
775 for(const auto& particle : table){

776 for(const auto& pos : particle){

777 output << pos << " ",

778 }

779 }

780 return output;

781 F

784 double System::kinetic(const int& particle, const int& bead, const int&
bead_pm, const double& displacement) const{

785 return O.5*mass [particle]l*pow (((table[particle] [bead]l+displacement)-tablel[
particle] [bead_pm])/d_tau,2);

786 }

7ss double System::energy (){

789 double E(0.0) ;

790 for(size_t part(0); part<N_part; part++){

791 for(size_t bead(0); bead<N_slices; bead++){

792 E+=kinetic (part ,hbead,(bead+1)%N_slices);

793 E+=(xptr_Vext) (table[part] [bead]) ;

794 for(size_t part2(part+1); part2<N_part; part2++){
795 E+=(*ptr_Vint) (table[part] [bead], table[part2] [bead]) ;
796 }

797 }

798 }

799 return E;

800

801

802

803

s04 bool System::metropolisAcceptance (){

805 return ( randomDouble (0,1) <= exp(-(0.1*d_tau/hbar) * (s_new - s_old)) );
806

807

808

809

810 // HHHHHAHHHHSHHH A A HHSHHHBSHHHAEE moves  HAHHAHHHHAHHHHSH BB RSB HHSH R B RS HH//
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835
836
837
838
839
840

841

843

859
860
861
862
863
864
865
866
867
868

869

bool System::localMove(const double& h){
// random integer between O and N_slices-1

mm = rng()%N_slices;
// mm-1 with periodic boundary condition
mm_min = (mm + N_slices - 1)%N_slices;
// mm+1 with periodic boundary condition
mm_plu = (mm + 1)%N_slices;
// random integer between 0 and N_part-1
nn = rng()%N_part;
verif [nn] [mm]++;
dis=GenerateDist (h) ;
/* as we take the difference of new and old action S_new-S_old,
// consider only the part of the action that is affected by the
// proposed new position
s_old = kinetic(nn,mm,mm_plu) + kinetic(nn,mm,mm_min)
+ (*ptr_Vext) (table[nn] [mm]) ;
s_new = kinetic(nn,mm,mm_plu,dis) + kinetic(nn,mm,mm_min,dis)
+ (xptr_Vext) (table[nn] [mm]+dis) ;
if (N_part>1){
for(size_t 1(0); i<N_part; i++){
if (i'=nn){
s_old+=(xptr_Vint) (table[i] [mm],table [nn] [mm]) ;
s_new+=(xptr_Vint) (table[i] [mm], table[nn] [mm]+dis) ;
}
}
}
if (metropolisAcceptance()){ // metropolis acceptance
table [nn] [mm] += dis; // update position with new one
H += (s_new - s_old); // update total action
return true;
Yelse{
return false;
}
}

bool System::globalDisplacement (const double& h){
// random integer between O and N_part-1
nn = rng()%N_part;

dis=GenerateDist (h) ;

/* no relative move between the time slices //
// --> only the potential action changes */
s_01ld=0.0;
s_new=0.0;
for(size_t j(0); j<N_slices; j++){
s_old+=(*ptr_Vext) (table[nnl[jl);
s_new+=(*ptr_Vext) (table[nn] [jl+dis);
if (N_part>1){
for(size_t 1(0); i<N_part; i++){
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871 if (i!=nn){

872 s_old+=(xptr_Vint) (table[i][j],table[nn][j]);
873 s_new+=(xptr_Vint) (table[i][j],table[nn] [jl+dis);
874 }

875 }

876 }

877 }

879 if (metropolisAcceptance()){ // metropolis acceptance
880 for (auto& pos : tablel[nn]){

881 pos+=dis;

882 }

883 H += (s_new - s_old);

884 return true;

885 }elsed{

886 return false;

887 }

888 F

889
890
891
892

803 bool System::bisection(const double& h, const double& sRel){

894 // random integer between O and N_slices-1
895 mm = rng()%N_slices;

896 // mm-1 with periodic boundary condition
897 mm_min = (mm + N_slices - 1)%N_slices;

898 // random integer between 0O and N_part-1
899 nn = rng()%N_part;

900

901 dis=GenerateDist (h) ;

902 size_t 1(N_slices*sRel);

903

904 s_01ld=0.0;

905 s_new=0.0;

906 int ind_j (0) ;

907 for(size_t j(0); j<1; j++){

908 ind_j=(mm+j)%N_slices;

909 s_old+=(xptr_Vext) (table[nn] [ind_j]);
910 s_new+=(xptr_Vext) (table[nn] [ind_jl+dis);
911 if (N_part>1){

912 for(size_t 1(0); i<N_part; i++){

913 if (i!'=nn){

914 s_old+=(xptr_Vint) (table[i][ind_j], table[nn] [ind_j]);
915 s_new+=(xptr_Vint) (table[i] [ind_j],table[nn][ind_jl+dis);
916 }

917 }

918 }

919 }

920 s_old += kinetic(nn,mm,mm_min)

921 + kinetic(nn, (mm+1-1)%N_slices,(mm+1)%N_slices);

922 s_new += kinetic(nn,mm,mm_min,dis)

923 + kinetic(nn, (mm+1-1)%N_slices,(mm+1)%N_slices,dis);
924

925 if (metropolisAcceptance()){ // metropolis acceptance

926 for(size_t i(0); i<1l; i++){

927 table [nn] [(mm+i)%N_slices]+=dis;

928 }

929 H += (s_new - s_old);

930 return true;

46
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939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955

956

959

960
961
962
963
964
965
966
967
968
969

970

980
981
982
983
984
985
986
987

988

Yelse{
return false;

}

bool System::swap(){
if (N_part>1){
// random integer between 0 and N_part-1
mm_min = rng()%N_part;
// another, but different, random integer between O and N_part-1
mm_plu = (mm_min+l+rng()%(N_part-1))%N_part;
// random integer between O and N_slices-1 (bead where the swap starts)
mm = rng()%N_slices;
//length of the swap (nb of slices swapped)
nn = rng()%(N_slices-1)+1;

s_01d=0.0;
s_new=0.0;
int ind_j (0), ind_j_pm(0);

ind_j=mm;
ind_j_pm=(mm+N_slices-1)%N_slices;
s_old += kinetic(mm_min,ind_j,ind_j_pm)

+ kinetic(mm_plu,ind_j,ind_j_pm);
s_new += kinetic(mm_min,ind_j,ind_j_pm,table[mm_plu] [mm]-table[mm_min][
mm])

+ kinetic(mm_plu,ind_j,ind_j_pm,table[mm_min] [mm]-table[mm_plull
mm]) ;

for(size_t j(0); j<mn; j++){

ind_j=(mm+j)%N_slices;

ind_j_pm=(ind_j+N_slices-1)%N_slices;

if (mass[mm_min]!=mass [mm_plul){

for(size_t 1(0); i<N_part; i++){
if(i!'=mm_min and i'!=mm_plu){

// change for particle(mm_min)
s_old+=(xptr_Vint) (table[i] [ind_j],table[mm_min] [ind_j]1);
s_new+=(xptr_Vint) (table[i] [ind_j],table[mm_plu][ind_jl);
// change for particle(mm_plu)
s_old+=(*ptr_Vint) (table[i] [ind_j], table [mm_plul] [ind_j]);
s_new+=(*ptr_Vint) (table[i][ind_j],table[mm_min] [ind_j]);

}
}
}
/* in swapped part of paths : //
// K1_new = ml1*(K2_o0ld/m2), K2_new=m2/mi1*K1_old */
if (§){
s_old += kinetic(mm_min,ind_j,ind_j_pm)
+ kinetic(mm_plu,ind_j,ind_j_pm);
s_new += mass[mm_min]/mass[mm_plul*kinetic(mm_plu,ind_j,ind_j_pm)
+ mass [mm_plul]/mass[mm_min]*kinetic(mm_min,ind_j,ind_j_pm);
}

}

ind_j=(mm+nn-1)%N_slices;

ind_j_pm=(mm+nn)%N_slices;

s_old += kinetic(mm_min,ind_j,ind_j_pm)
+ kinetic(mm_plu,ind_j,ind_j_pm);
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989 s_new += kinetic(mm_min,ind_j,ind_j_pm,table[mm_plu][ind_jl-table[mm_min
1[lind_j1)

990 + kinetic(mm_plu,ind_j,ind_j_pm,table[mm_min][ind_jl-table[mm_plu
1[ind_j1);

991

992

993 if (metropolisAcceptance()){ // metropolis acceptance

994 double tmp(0.0);

995 for(size_t j(0); j<nn; j++){

996 ind_j=(mm+j)%N_slices;

997 tmp=table [mm_min] [ind_j];

998 table [mm_min] [ind_jl=table [mm_plul[ind_jI;

999 table [mm_plu] [ind_jl=tmp;

1000 }

1001 H += (s_new - s_old);

1002 return true;

1003 }

1004 }

1005 return false;

1006

1007

1008

1009

1010

1011 bool System::inverse (){

012  nn = rang()%N_part; // random integer between O and N_part-1
1013

1014 // no relative move between the time slices
1015 // --> only the potential action changes
1016 s_01d=0.0;

1017 s_new=0.0;
015 for(size_t j(0); j<N_slices; j++){

1019 s_old+=(xptr_Vext) ( table[nn][j]l);

1020 s_new+=(xptr_Vext) (-table[nn][j]);

1021 if(N_part>1){

1022 for(size_t 1(0); i<N_part; i++){

1023 if (i!'=nn){

1024 s_old+=(xptr_Vint) (table[i][j]l, tablel[nn]([jl);
1025 s_new+=(xptr_Vint) (table[i][j],-table[nn][j]);
1026 }

1027 }

1028 }

1029 }

1030

1031 if (metropolisAcceptance()){ // metropolis acceptance
1032 for(auto& pos : table[nn]){

1033 pos*x=-1;

1034 }

1035 H += (s_new - s_old);

1036 return true;

1037 }else{

1038 return false;

1039 }

1040 }

1041

1042

1043

1044

1045 bool System::symmetryCM(){

1046 nn = rng()%N_part; // random integer between O and N_part-1
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1047 dis= 0;

1048 for(const auto& pos : table[nn]){
1049 dis+=pos;

1050 }

1051 dis*=-2.0/table[nn].size();

1053 // no relative move between the time slices

1054 // --> only the potential action changes

1055 s_01d=0.0;

1056 s_new=0.0;

1057 for(size_t j(0); j<N_slices; j++){

1058 s_old+=(xptr_Vext) (table[nn]l[jl);

1059 s_new+=(xptr_Vext) (table[nn] [jl+dis);

1060 if(N_part>1){

1061 for(size_t 1(0); i<N_part; i++){

1062 if (it!'=nn){

1063 s_old+=(xptr_Vint) (table[i][j],table[nn][j]l);

1064 s_new+=(xptr_Vint) (table[i][j],table[nn] [jl+dis);

1065 }

1066 }

1067 }

1068 T

1069

1070 if (metropolisAcceptance()){ // metropolis acceptance

1071 for (auto& pos : table[nn]){

1072 pos+=dis;

1073 }

1074 H += (s_new - s_old);

1075 return true;

1076 }elsed{

1077 return false;

1078 }

1079 }

1080

1081

1082

1083

1082 void System::measure_energy(double VO, double x0){

1085 double temp_energy_H(0), temp_energy_ETH(O0) ;

1086

1087 double R(VO); //For H-bond, VO is R

55 double D(83.402), a(2.2), r0(0.96), deltal (0.4%D);

1089 double b(2.2), R1(2*r0+1/a), DELTA(deltal*exp(-b*x(R-R1)));

1090

1091 temp_energy_ETH += (*xptr_Vext) (table[0][0])

1092 + (*xptr_Vext).eO_estimator (table[0][0]);

1093

1094 for(size_t i(1); i < tablel[0].size(); i++){

1095 temp_energy_ETH += (*ptr_Vext) (table[0][i])

1096 + (*xptr_Vext).eO_estimator (table[0][i]);

1097 temp_energy_H += mass [0]/2 * pow((table[0][i] - table[0][i-1])/d_tau, 2)

1098 + (xptr_Vext) (table[0][il);

1099 }

1100 temp_energy_H += mass[0]/2 * pow((table[0][0] - table[0][N_slices-1])/
d_tau, 2)

1101 + (xptr_Vext) (table [0][0]);

1103 energies_psi.push_back(temp_energy_ETH/N_slices);

1104 energies_h.push_back(temp_energy_H/N_slices);
1105 }
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1106

1107

1108

1109

1110 void System::average_energy (){
1111 ofstream fichier_output;

1112 fichier_output.open("eO.out");
1113 fichier_output.precision (15);

1115 double temp_energy(0), temp_error (0);
1117 cout << "Finally, with d_tau = " << d_tau << endl;

1119 //PSI energies

1120 for(size_t i(0); i < energies_psi.size(); i++){

1121 temp_energy += energies_psil[il;

1122 temp_error += pow(energies_psil[i], 2);

1123 T

1124 temp_energy = temp_energy/energies_psi.size();

1125 temp_error = sqrt((temp_error/energies_psi.size() - pow(temp_energy, 2))

1126 /energies_psi.size());

1128 cout << "PSI: " << temp_energy << " +- " << temp_error << endl;
1129 fichier_output << "PSI: " << temp_energy << " +- " << temp_error << endl;

1131 //H energies
1132 temp_energy = 0;
1133 temp_error = 0;

1135 for(size_t 1(0); i < energies_h.size(); i++){
1136 temp_energy += energies_h[i];
1137 temp_error += pow(energies_h[i], 2);

1138 T

1139 temp_energy = temp_energy/energies_h.size();

1140 temp_error = sqrt((temp_error/energies_h.size() - pow(temp_energy, 2))

1141 /energies_h.size ());

1142

1143 cout << "H: " << temp_energy << " +- " << temp_error << endl;

1144 fichier_output << "H: " << temp_energy << " +- " << temp_error << endl;

1146 fichier_output.close();

1152 ostream& operator<<(ostream& output, const System& s){
1153 return s.write(output);

1154 }

1158 // #HAHUHHBHAHAHAHAH RS HBHAH AR AR BB RS HAH AR BH RS RS HAH AR AB RS RS H AR AR AR BRRBHAHAHAH//
1150 // ####H#uHHH SRS HBAHFH#A#S C.4 : FUNCTION DEFINITIONS ##########H#H#ARFHARIHE//
1160 // HHRBHHHHHAESHBAHHARHHARBABHHARHASHHASHASHHAR B AR H B AR B UGS BASH ARG B AR B RSB ARHR//
1161

1162 // Generate a random (uniform) double between ’min’ and ’max’

1163 double randomDouble (const double& min, const double& max,

1164 const bool& closed){

1165 if (closed) return (min + (max-min) * (double)rng()/rng.max());

20



1166 else return (min + (max-min) * ((double)rng()+0.5)/(rng.max()+1.0));
1167 }

1168

1160 // Generate a random double from a normal Cauchy distribution

1170 double CauchyDistribution (){

1171 return tan(M_PI*(randomDouble(-0.5,0.5,false)));

1172 }

1174 // Generate a random double from one of the implemeneted distributions
1175 double GenerateDist (const double& h){
1176 if (rng O %2) {

1177 return h * randomDouble(-1.0,1.0); // proposed displacement
1178 }elsed{

1179 return h * CauchyDistribution(); // proposed displacement
1180 }

1181 }
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