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Abstract

In these notes we present Feynman’s path integral formulation of quantum mechanics and we present
the semiclassical/WKB approximation in quantum mechanics. The path integral formalism is derived,
its equivalence with the Schrödinger picture is shown, the technique of separable Lagrangians is discussed
and the formalism is applied to the statistical physics description of the harmonic oscillator. The WKB
approximation is derived, its validity is discussed, connection rules are obtained and they are applied to
compute general bound states together with their energies via the derived Born-Sommerfeld rule.

1 Introduction

We consider the description of the non-relativistic
1D dynamics of a quantum particle of mass m [kg]
and energy E [J] subjected to a time-independent
potential V (x) [J], with x [m] the position coordi-
nate and t [s] the time coordinate. In these notes,
divided in two parts, we tackle the problem un-
der two different approaches, namely first through
a novel quantum mechanical formalism and then
through an approximation of the usual quantum
description. The former, due to Feynman, allows
for a description of quantum phenomena indepen-
dent of (but equivalent to) the Schrödinger equa-
tion by the means of a functional integral over de-
terministic paths, hence the name path integrals.
The latter, due to Wentzel, Kramers and Brillouin,
hence the name WKB, is an approximation de-
signed to solve the Schrödinger equation for par-
ticle energies much higher than the potential they
are interacting with.

2 Path Integrals

2.1 The problem

We want to formulate an alternative physical
framework, equivalent to the Schrödinger picture of
quantum phenomena, describing the dynamics of a
particle between two space-time points a = (xa, ta)
and b = (xb, tb).

2.2 Classical solution

Classically one identifies the physical path as the
one that minimizes the action S [Js] functional

S[x(t)] =

∫ tb

ta

L(ẋ(t), x(t))dt, (1)

fed by paths x(t) : [ta, tb] → R with boundary con-
ditions x(ta) = xa, x(tb) = xb, where we integrate
over the Lagrangian L [J]

L(ẋ, x) =
m

2
ẋ2 − V (x) (2)

evaluated at the given path. This physical path
is called the classical path x̄(t) and it is associ-
ated with its classical action function Scl(b, a) =
S[x̄(t)]. [1, p.26]

2.3 Feynman’s solution

In this section we follow Feynman’s approach [1,
Chapter 1]. Consider, as depicted in figure 1, a
source of particles at A and measure the resulting
stream of particles reaching screen B, away from A,
by the means of a vertically moving detector. In-
between A and B, place some impenetrable slabs
and drill holes in them. Clearly a classical descrip-
tion is insufficient to explain the empirically ob-
served stream of particles producing an interference
pattern at B. However we notice that before their
observed event detection at B, particles starting
from A have a finite amount of possible paths, or
unobserved methods, available to them to reach
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Figure 1: Feynman’s historical thought experiment
of particles emitted at A reaching a screen B after
interacting with obstacles. Adapted from [1].

screen B. We postulate that each method j is as-
sociated to an amplitude ϕj ∈ C and that overall
methods interfere with each other producing a to-
tal amplitude of the whole event,

ϕ =
∑
j

ϕj . (3)

The observed detection probability is then postu-
lated to be proportional to P = |ϕ|2 ∈ R. The
number of slabs and the number of holes in them
is arbitrary, therefore we take the limit of infinitely
many slabs with infinitely many holes to obtain a
constrained vacuum where at each horizontal posi-
tion particles are forced to pick a vertical one, thus
following a continuous path. In this limit the finite
amount of methods becomes the infinite amount
of possible paths x(t) between space-time points a
and b, as in figure 2. If we postulate the transition
amplitude of a path x(t) to be

ϕ[x(t)] ∼ exp

(
i

ℏ
S[x(t)]

)
, (4)

then the total transition amplitude is

K(b, a) :=
∑

all paths
a→ b

ϕ[x(t)]

=:

∫
exp

(
i

ℏ
S[x(t)]

)
Dx(t).

(5)

The last equality is called the path integral and
it suggests a functional integration over varying
paths, captured in the measure Dx(t). The mean-
ing of the measure is understood by applying many

a

b

Figure 2: Limiting result of figure 1 as the number
of slabs and holes in them goes to infinity.

times the composition rule1 [1, p.37]

K(b, a) =

∫
K(b, c)K(c, a)dxc, (6)

which is true since any path a → b can be broken
into two pieces a → c and c → b. Notice how
matching of derivatives at c is unnecessary as all
paths, even the matching one, must be considered.
Then, breaking the path intoN pieces each of time
step duration ε = (tb − ta)/N we get [1, p.38]

K(b, a) = lim
ε→0

∫
dx1 · · ·

∫
dxN−1

N∏
i=1

K(i, i− 1),

(7)
with (b, a) ≡ (N, 0) and therefore, in the limit ε→
0, dx1 · · · dxN−1 → Dx(t) represents the variation
of the discretized path (x1, . . . , xN−1) → x(t).

How come the infinite sum (5) converges? Con-
sider paths varying around x̄(t): for paths suffi-
ciently close to x̄(t) then |S[x(t)] − Scl(b, a)| < πℏ
and the amplitudes interfere constructively. How-
ever, for paths sufficiently away from x̄(t) then
|S[x(t)]−Scl(b, a)| > πℏ and the phase starts to vi-
olently oscillate, therefore amplitudes interfere de-
structively. Overall, only paths x(t) ≈ x̄(t) up to
the quantum scale πℏ contribute: in the classical
limit ℏ → 0 indeed only x̄(t) contributes. [1, p.29]

2.4 Schrödinger implies Feynman

Following [2, Section 2.1], we show that the
Schrödinger picture implies the path integral repre-
sentation of quantum phenomena. Given an initial
state |ψ(ta)⟩, its time evolution |ψ(tb)⟩ is obtained
by applying the time evolution operator

Û(tb, ta) = exp

(
− i

ℏ
(tb − ta)Ĥ

)
, (8)

1In these notes, by convention, a regular integral without
bounds is understood as an integral over R.
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implied by the Schrödinger equation. Hence,

ψ(xb, tb) = ⟨xb |ψ(tb)⟩ =
〈
xb

∣∣∣ Û(tb, ta)
∣∣∣ψ(ta)〉

=

∫
dxa

〈
xb

∣∣∣ Û(tb, ta)
∣∣∣xa〉ψ(xa, ta).

(9)
If we split Ĥ into a kinetic part T̂ and a potential
part V̂ , generally not commuting [T̂ , V̂ ] ̸= 0, then
by applying Trotter’s formula [2, p.93],

eT̂+V̂ = lim
N→∞

N∏
k=1

eT̂ /NeV̂ /N , (10)

the above sandwich containing Ĥ = T (p̂) + V (x̂)
becomes (omitting the limit N → ∞)〈
xb

∣∣∣ Û(tb, ta)
∣∣∣xa〉 =

〈
xb

∣∣∣∣∣
N∏
k=1

e−iεT̂ /ℏe−iεV̂ /ℏ

∣∣∣∣∣xa
〉

=
N−1∏
k=1

(∫
dxk

) N∏
k=1

〈
xk

∣∣∣ e−iεT̂ /ℏe−iεV̂ /ℏ
∣∣∣xk−1

〉
,

(11)

where N − 1 identity operators in position space
were inserted between the N factors and where we
identify (xb, xa) ≡ (xN , x0). The N sandwiches
can be easily evaluated with a change of basis
|x⟩ → |p⟩, the position-momentum sandwich
⟨x|p⟩ = eipx/ℏ/

√
2πℏ and a Gaussian integration2,

after which one is left with〈
xb

∣∣∣ Û(tb, ta)
∣∣∣xa〉 = lim

N→∞

∫
dx1 · · ·

∫
dxN−1

AN exp

(
ε
i

ℏ

N∑
k=1

[
m

2

(
xk − xk−1

ε

)2

− V (xk−1)

])
,

(12)

where the constant A :=
√
m/(2πiℏε) has been

defined. By recognising in (12) the Riemann sum
of (1) in the exponential, the measure Dx(t) and
by absorbing AN in the amplitude, in accordance
with (4), one arrives at the path integral〈

xb

∣∣∣ Û(tb, ta)
∣∣∣xa〉 =

∫
exp

(
i

ℏ
S[x(t)]

)
Dx(t),

(13)
which is the desired result. Overall, by (9), the
path integral is the integral kernel that time-
evolves wavefunctions, [1, p.57]

ψ(xb, tb) =

∫
K(b, a)ψ(xa, ta)dxa, (14)

2See Appendix A.

and hence, comparing with (6), wavefunctions
ψ(xb, tb) can be seen as kernels K(b, a) for which
the initial transition point a was forgotten [1, p.57].
Indeed, by injecting (14) into the Schrödinger
equation with (x, t) ≡ (xb, tb), and by selecting
ψ(x′a, ta) = δ(x′a − xa), one effectively obtains that
the kernel is a solution of the Schrödinger equation
[1, p.81],

iℏ
∂K

∂tb
(b, a) =

[
− ℏ2

2m

∂2

∂x2b
+ V (xb)

]
K(b, a). (15)

The normalization of the path integral, how-
ever, takes a different form [1, p.83]:

∀xa : 1 =

∫∫
dxcdxbK

∗(c, b)K(c, a), (16)

where tc > ta = tb, obtained from the identity [3]

1 =

∫
dxb

〈
xb

∣∣∣ Û †(tc, tb)Û(tc, ta)
∣∣∣xa〉 . (17)

As a final remark, by inserting two identity opera-
tors in the energy eigenstates basis |n⟩ (they satisfy
Ĥ |n⟩ = En |n⟩ for n ∈ N) in (13) and by denoting
ϕn(x) = ⟨x|n⟩ one obtains [1, p.88]

K(b, a) =
∞∑
n=0

ϕn(xb)ϕ
∗
n(xa)e

−i(tb−ta)En/ℏ. (18)

2.5 Feynman implies Schrödinger

Following [1, Section 4.1], we show the inverse di-
rection of the preceding section. Denote (xa, ta) ≡
(y, t), (xb, tb) ≡ (x, t+ ε) for ε ≪ 1 and, in sight of
the antecedent discussion, apply (6) to obtain

ψ(x, t+ ε) ∼
∫

dy ψ(y, t)e
im
2ℏε (x−y)2e−

iε
ℏ V (x+y

2
,t),

(19)
where (1) was discretized. Because of the first ex-
ponential, only terms y = x + η with η ≪ 1 will
constructively contribute to the integral, hence by
changing variables

ψ(x, t) + ε
∂ψ

∂t
(x, t) ∼

∫
dη ψ(y, t) exp

(
imη2

2ℏε

)
(
1− iε

ℏ
V (x, t)

)(
ψ(x, t) +

η2

2

∂2ψ

∂x2
(x, t)

)
,

(20)

where we expanded all quantities up to order ε and
η2 ∼ ε (due to the very same first exponential).
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The integration can now be performed and we end
up with

ψ(x, t) + ε
∂ψ

∂t
(x, t) = A

√
2πiℏε
m(

ψ(x, t) +
iℏε
2m

∂2ψ

∂x2
(x, t)− iε

ℏ
V (x, t)ψ(x, t)

)
,

(21)

where we replaced the proportionality with the
equality and some unknown constant A ∈ C. In
order to obtain a finite quantity when ε → 0, it
must be A =

√
m/(2πiℏε), as expected. By can-

celling the square root with A and by rearrang-
ing the above equation, we obtain the Schrödinger
equation, which is the desired result.

2.6 Separable Lagrangians

Equation (12) gives us a cumbersome definition of
the path integral because it requires N − 1 inte-
grations: we want to avoid such laborious work
[4]. To this end consider separable Lagrangians
which, upon decomposition x(t) = x̄(t) + y(t) with
y(ta) = y(tb) = 0 [1, p.59] as in figure 3, satisfy [4]

S[x(t)] = Scl(b, a) +R[y(t)] (22)

for some functional R. In such a case the path
integral becomes [4]

K(b, a) = F (tb, ta) exp

(
i

ℏ
Scl(b, a)

)
(23)

and, since F (tb, ta) := K(0, 0), by time transla-
tional symmetry F (tb, ta) = F (T ) with T = tb − ta
[1, p.61]. If a Lagrangian is exactly separable then
the difficulty of the N − 1 integrations is substi-
tuted by the determination of F (T ) [1, p.62], for
example using (16). It is worth noting that F (T )
is actually not so important, as frequently only ra-
tios of kernels are actually needed and hence the
factors F (T ) cancel out [4].
An example of separable Lagrangians is the class

of quadratic Lagrangians

L(ẋ, x) = aẋ2 + bẋx+ cx2 + dẋ+ ex+ f, (24)

with a, b, c, d, e, f ∈ R [1, p.58]. A laborious, but
trivial, work of partial integrations can show that
for them indeed [1, p.60]

S[x(t)] = Scl(b, a) +

∫ tb

ta

(
aẏ2 + bẏy + cy2

)
dt.

(25)

x̄(t)

x(t)
a

b
y(t)

Figure 3: Decomposition of a generic path x(t)
from a to b by the means of a generic variation
y(t) around the fixed classical path x̄(t).

This implies that any non-exactly separable La-
grangian can be approximately separable by Taylor
expanding the potential in it and bringing the for-
mer in a quadratic form [1, p.62].

2.7 Statistical Physics

The path integral formalism can be of great help
in the computation of the partition function
Z = Tr(ρ̂) of thermodynamical systems of Hamil-
tonian Ĥ described in the canonical ensemble,

whose density matrix is given by ρ̂ = e−βĤ ,
where β [J−1] is the (fixed) inverse temperature [4].
Indeed, by computing

Z = Tr(ρ̂) =

∫
dx′ ⟨x′|e−βĤ |x′⟩ (26)

we observe that the matrix element is equivalent to
(13) provided the following identifications: peri-
odic boundary conditions xa = xb = x′ and the
time-temperature identification iT = βℏ [4].
In particular, being βℏ ∈ R, the latter implies the
presence of a Wick rotation t→ it =: τ to imag-
inary time τ ∈ R. Therefore, t is now a negative
imaginary number and βℏ = i(tb − ta) = τb − τa,
as illustrated in figure 4 [4]. In order to link the
partition function with the path integral, it is stan-
dard practice in the literature (see for example [1,

ta

tb

τa τb

βh̄

T

Figure 4: Wick rotation in the complex plane C.
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p.275] or [4]) to perform a not-so rigorous change
of imaginary-to-real variable t → it = τ in (1). In
this report we instead apply a more rigorous ar-
gument of our own invention. First, analytically
extend paths x(z) in the complex plane of times
z ∈ C and demand the former to be rotationally
i-periodic x(iz) = x(z). This is because we want
the same dynamics on both the imaginary and real
axis x(t) = x(τ). Then, referring to figure 4, com-
pute the complex integral3 reinterpretation of (1),
where ẋ(z) = (dx/dz)(z), along the straight line
path ta → tb by parametrizing z(λ) = −iλ for
λ ∈ [τa, τb] ⊂ R. The action then becomes

S[x(t)] =

∫
ta → tb

dz

[
m

2

(
dx

dz
(z)

)2

− V (x(z))

]

=

∫ τb

τa

dλ (−i)

[
m

2

(
dx

dz
(−iλ)

)2

− V (x(−iλ))

]

= −i
∫ τb

τa

dλ

[
m

2

(
i
d

dλ
x(−iλ)

)2

− V (x(−iλ))

]

= i

∫
τa → τb

dz

[
m

2

(
dx

dz
(z)

)2

+ V (x(z))

]
= iSE [x(τ)],

(27)

where the second line follows by definition, in the
third line we apply the chain rule, in the forth line
we apply the i-periodicity and in the last equality
we define the Euclidean action SE [Js] [4]

SE [x(τ)] :=

∫ τb

τa

H(ẋ(τ), x(τ))dτ, (28)

which, we recognise, integrates over the classical
Hamiltonian H [J]

H(ẋ, x) =
m

2
ẋ2 + V (x). (29)

Notice how the measure dt and therefore also dτ
is just a dummy renaming of dz. Eventually the
above computation shows the relationship between
the two actions to be S[x(t)] = iSE [x(τ)] and there-
fore, stitching everything together, the link be-
tween the partition function and the Euclidean
path integral is given by [4]

Z =

∫
dx′
∫

exp

(
−1

ℏ
SE [x(τ)]

)
Dx(τ). (30)

3See Appendix B.

In practice, in order to compute the matrix
element, it is sufficient to perform the time-
temperature substitution T = −iβℏ in K(b, a) [4].

2.8 Typical examples

For the free particle V ≡ 0 the classical action is
trivially [1, p.27]

Scl(b, a) =
m

2

(xb − xa)
2

tb − ta
(31)

and, since its Lagrangian is separable, using (23)

K(b, a) =

√
m

2πiℏT
exp

(
im(xb − xa)

2

2ℏ(tb − ta)

)
, (32)

where its F (t) was found by normalization (16) [4].
For the harmonic oscillator V (x) = mω2x2/2,

with frequency ω [s−1], one finds [1, p.28]

Scl(b, a) =
mω

2 sin(ωT )

[
(x2a + x2b) cos(ωT )− 2xaxb

]
(33)

and, likewise [4],

K(b, a) =

√
mω

2πiℏ sin(ωT )

exp

{
imω

2ℏ sin(ωT )

[
(x2a + x2b) cos(ωT )− 2xaxb

]}
.

(34)

Notice how this kernel is equivalent to the free par-
ticle one by letting ω → 0. We now apply the
concepts of the precedent section. By substitut-
ing4 T = −iβℏ and requiring xa = xb = x above
one obtains [4]

⟨x|e−βĤ |x⟩ =
√

mω

2πℏ sinh(βℏω)

exp

(
− mωx2

ℏ sinh(βℏω)

[
cosh(βℏω)− 1

]) (35)

which, integrated, yields [4]

Z =

∫
dx ⟨x|e−βĤ |x⟩ = e−βℏω/2

1− e−βℏω

=
∞∑
n=0

exp

(
−βℏω

(
n+

1

2

))

=

∞∑
n=0

e−βEn =
∑
n

⟨n|e−βĤ |n⟩ = Tr(ρ̂),

(36)

where En = ℏω(n + 1/2) are the eigenvalues of
the energy eigenstates, giving us the expected har-
monic oscillator spectrum.

4See Appendix C.
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3 WKB approximation

3.1 The problem

We want to approximately solve the time-
independent Schrödinger equation(

− ℏ2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x). (37)

To this end, we associate semiclassical quantities to
the particle [5]: the local momentum p [kg ·m/s]

p(x) :=
√
2m[E − V (x)] (38)

and the local de Broglie’s wavelength λ [m]

λ(x) := 2πℏ/p(x), (39)

connected to p(x) by means of the local wavevec-
tor k(x) = p(x)/ℏ. We call a turning point any
solution of V (x) = E [5].

3.2 Derivation

We follow [5]. We rewrite (37) in the form[
ℏ2

d2

dx2
+ p(x)2

]
ψ(x) = 0 (40)

and propose the ansatz ψ(x) = eiS(x)/ℏ with
S(x) [Js] the so-called eikonal. This leads to(

dS

dx

)2

− iℏ
d2S

dx2
= p(x)2, (41)

which can be solved thanks to the semiclassical
expansion of the eikonal,

S(x) =
∞∑
j=0

ℏjSj(x), (42)

where j is called the order and the powers of ℏ
play the role of order bookkeeping. Injecting (42)
into (40) and grouping together terms of same order
gives us at order j = 0(

dS0
dx

)2

= p(x)2, (43)

solved by the two solutions

S0(x) = ±
∫ x

x0

p(y)dy, (44)

with x0 such that S0(x0) = 0. At order j = 1 we
obtain

2
dS0
dx

dS1
dx

= i
d2S0
dx2

, (45)

solved, using S0, by

S1(x) =
1

i
ln

(
1√
p(x)

)
+ const. (46)

Finally, at order j = 2, using S0 and S1,

2
dS0
dx

dS2
dx

= −
(
dS1
dx

)2

+ i
d2S1
dx2

. (47)

A recurrence relation for generic j can be derived
but since we will truncate (42) at order j = 2, we
only need to estimate the error on the S2 solution:

S2(x) =

∫ x

x0

3p′(y)2 − 2p(y)p′′(y)

8p(y)3
dy = O

(
λ

L

)
,

(48)
where we count a contribution of L [m], the char-
acteristic length over which V (x) varies, for each
integration, a contribution of 1/L for each differen-
tiation and a contribution of p ∼ k ∼ 1/λ for each
local momentum. The asymptotic behaviour of S2
suggests that the WKB approximation is accurate
if for the wavefunction λ≪ L. That is [5]∣∣∣∣dλdx

∣∣∣∣ = 2πℏ
∣∣∣∣p′(x)p(x)

∣∣∣∣ ∼ λ

∣∣∣∣ V ′(x)

E − V (x)

∣∣∣∣≪ 1, (49)

meaning that the WKB approximation breaks
down close to turning points. Overall, stitching
S1 and S2 back in the ansatz, we obtain the (un-
normalized) WKB wavefunctions [5]

ψ±(x) =
1√
p(x)

exp

(
± i

ℏ

∫ x

x0

p(y)dy

)
. (50)

Notice how the approximation diverges at turning
points due to the denominator. For E > V (x) it is
p(x)2 > 0 and (50) is valid. However, for E < V (x)
it is p(x)2 < 0 so we must rewrite p(x) = ±i|p(x)|
and the WKB wavefunctions become [5]

ψ±(x) =
1√
|p(x)|

exp

(
±1

ℏ

∫ x

x0

|p(y)|dy
)
. (51)

For a constant potential, hence a constant p(y), the
integrations are trivial and one readily obtains the
usual wave and exponential solutions [4].
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V (x)

E

ψ(x)

x

a
b

Figure 5: Bound state ψ(x) in a binding poten-
tial V (x) confined between tuning points a, b. The
qualitative behaviour of ψ(x) is shown.

3.3 Connection rules

We want to compute the bound states of a generic
binding potential for which exactly two turning
points a < b exist, dividing space in a classically
allowed x ∈ [a, b] and forbidden x /∈ [a, b] region
[5], as depicted in figure 5. In the allowed region
E > V (x), the wavefunction ψ(x) is a superposi-
tion of (50), namely [6, p.161]

ψ(x) =
C1√
p(x)

exp

(
i

ℏ

∫ x

b
p(y)dy

)
+

C2√
p(x)

exp

(
− i

ℏ

∫ x

b
p(y)dy

)
,

(52)

for some C1, C2 ∈ C. In the forbidden region
E < V (x), one must use (51). But since we
must ensure the wavefunction to be normalizable,
ψ(x) ∈ L2(R), we select the solution that exponen-
tially decays at x → ±∞ [5]. Focusing from now
on the turning point x0 = b, in particular requiring
V ′(x0) > 0, it is [6]

ψ(x) =
C√
|p(x)|

exp

(
−1

ℏ

∫ x

b
|p(y)|dy

)
, (53)

for some C ∈ C. Our goal is now to find the
matching relationships between C1, C2, C in order
to stitch together the two regimes. However we
cannot just equate the solutions at x0 since, due to
the criterion (49), we must stay away from x0 [5].
The way out is to analytically continue all func-
tions of x ∈ R → C and take advantage of the
extra dimension in the complex plane to contour
x0 in a clockwise Γ− or anti-clockwise Γ+ path [5],
as in figure 6. To simplify computations we linearly

x0

Γ+

Γ
−

x

Figure 6: Contouring of the turning point x0 in the
complex plane C by the means of paths Γ± starting
from and ending on the real line.

approximate the difference [5]

E − V (x) = E − V ((x− x0) + x0)

≈ E −
[
V (x0) + V ′(x0)(x− x0)

]
= V ′(x0)(x0 − x),

(54)

which implies

|p(x)| =
√

2mV ′(x0)
√
x− x0

=
√

2mV ′(x0)|x− x0|eiarg(x−x0)/2

= ±ip(x),
(55)

where we used that any complex number z ∈ C can
be written in the form z = |z|eiarg(z) and picking
Γ± it is arg(x− x0) = ±π. The inner dashed circle
of figure 6 is the region where the WKB approxi-
mation breaks down, while the outer dashed circle
is the region where (54) is valid: Γ± must therefore
pass in between the two [5]. We can now take so-
lution (53) and transport it along Γ±, from x > x0
to x < x0, and observe that since |p(x)| → ±ip(x)
then (53) falls in one of the two summands in su-
perposition (52), allowing for the identification [6,
p.162] {

C1 = Ceiπ/4

C2 = Ce−iπ/4
. (56)

Finally, we can restate (52) as [5]

ψ(x) =
2C√
p(x)

cos

(∫ x

b

p(y)

ℏ
dy +

π

4

)
, (57)

where we notice that the two important numbers
here are the factor of 2 in front of C and the π/4
phase shift. The analysis for turning point a is
analogous and it leads to almost the same wave-
functions where, upon substitution b → a = x0, in
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(53) the integration bounds are exchanged and in
(57) the phase shift is −π/4 [5]. Of course the roles
of the classically allowed and forbidden regions in-
terchange too.

3.4 Born-Sommerfeld rule

Having computed the bound states of a binding
potential, we want to compute their eigenenergies.
Refer again to the situation in figure 5 with exactly
two turning points: Since the observable |ψ(x)|2
must be the same whether we apply the connection
rules at a or b, then equating the two versions of
(57) and lifing the cosinuses leads to [5]∫ x

a

p(y)

ℏ
dy − π

4
=

∫ x

b

p(y)

ℏ
dy +

π

4
+ nπ, (58)

for some n ∈ N, which can be reshuffled into the
Born-Sommerfeld quantization rule [5]∫ b

a
p(x)dx = πℏ

(
n+

1

2

)
. (59)

The criterion (49) takes the form n≫ 1 because the
rule behaves as O(L/λ). Nevertheless, it sometimes
gives exact results even for natural n [5], such as
in the case of the harmonic oscillator of potential
V (x) = mω2x2/2 and turning points b = −a =√

2E/mω2: The integration is the area of a semi-
circle and solving for E leads to the expected result
E = ℏω(n+ 1/2).

4 Conclusions

Feynman’s path integral method was derived, its
equivalence with the Schrödinger equation was ex-
plicitated, the technique of separable Lagrangians
was shown, the path integral was applied to statis-
tical physics through a Wick rotation that was for-
mally justified and the typical examples of the free
particle and the harmonic oscillator were tackled.
The method was proven to be extremely powerful
since it bypasses the complicated resolution of the
time-dependent Schrödinger equation.
The WKB approximation was described, its

range of validity was discussed, connection rules for
the WKB wavefunctions were obtained and they
were applied to compute bound states and to de-
rive the Born-Sommerfeld rule. Albeit it remains
an approximation, we saw that for specific systems
it can lead to exact results.
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A Gaussian integral

For any a, b, c ∈ C with Re(a) > 0 it is∫
dx e−ax2+bx+c =

√
π

a
exp

(
b2

4a
+ c

)
. (60)

B Complex integration

For any f(z) ∈ C0(D) with D ⊂ C and for any
regular path C ⊂ D parametrized by z(λ) with
λ ∈ [a; b] ⊂ R and a < b it is defined∫

C
dz f(z) =

∫ b

a
dλ ż(λ)f(z(λ)). (61)

C Trigonometric properties

For any x ∈ R it is{
sin(ix) = i sinh(x)

cos(ix) = cosh(x)
(62)
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